

JavaGantt 2011.1

Manual

© BeeSoft, 2011
www.beesoft.eu

JavaGantt 2011.1 Manual

2

Content

1 Introduction ...4

1.1 JavaGantt features ...4

1.2 Quick start ..5

2 JavaGantt installation .. 13

2.1 Packages .. 13

2.2 License installation ... 14

3 Model for JavaGantt .. 15

3.1 Programming domain objects ... 15

3.2 Interface TimelineObject .. 17

3.3 Interface Dependency ... 18

3.4 Class GanttModel ... 18

4 JavaGantt component .. 21

4.1 Getting standard sub-components ... 21

4.2 Building a treetable .. 21

4.3 Building a chart .. 22

4.4 Mouse support .. 22

4.5 Localization ... 23

4.6 License protection .. 24

5 Gantt Tree Table ... 25

5.1 JTreeTable description ... 25

5.2 GanttNode .. 26

5.3 Gantt column and data binding ... 26

5.4 Localization ... 27

6 Gantt Chart .. 29

6.1 Chart header ... 30

6.2 Working with the time scale ... 30

6.3 Chart component .. 32

6.4 Layer .. 32

6.5 Implemented layers .. 35

7 Gantt actions ... 36

7.1 AbstractGanttAction ... 36

7.2 Localization ... 36

7.3 Undo / Redo ... 37

JavaGantt 2011.1 Manual

3

7.4 Implemented actions... 38

8 Shipping to customer ... 39

JavaGantt 2011.1 Manual

4

1 Introduction

JavaGantt is the Swing component for the Java gantt chart painting and editing.

It is powerful component, despite its complexity focused on easy-to-use programming. You
can see it has the "standard gantt chart" look. But almost all you see can be customized. Your
chart can look quite differently. This manual can help you to teach how you can do it.

1.1 JavaGantt features

This page contains descriptions of JavaGantt's most essential features:

• Standard view - Standard chart appearance and behavior customizable settings.
There are a treetable and a chart component side by side. The treetable on the left
hand side, and the chart component on the right. Exactly as you know it from other
gantt components. But you can modify their appearance as you need.

• Advanced treetable - The treetable has a few very interesting features: It is derived
from eu.beesoft.gaia.swing.JTreeTable, so it has the features of JTable and JTree -
it is easy to use it, if you are familiar with Swing programming. JTreeTable can
paint "zebra" background and also show / hide columns on user selection (right
click on treetable header displays popup menu with column names to hide / show).
There is also built-in support for the context popup menu and double click
processing.

JavaGantt 2011.1 Manual

5

• Data binding - Model for JavaGantt is oriented on the easy programming and
usage. One of its features is automated data binding. You can set a name of the
property of your domain object you want to display in some column and JavaGantt
displays it without any more programming. And the same it does with setting user-
changed visual data to domain object.

• Lazy loading - If your application works with a large dataset, it is suitable to load
to the memory just the visible part of the data. JavaGantt treetable listens to
treeexpand event and if node is expanded for the first time, it invokes method
explore() on GanttModel. This is the place you can load data for node's user object
and build subnodes. Do you know any more simple solution?

• Layers - Gantt chart is painted in some layers. You can choose which layers you
want install into gantt chart, and also you can hide / show layers at runtime. Each
layer has specific purpose and paints only the gadgets it is programmed for. You
can develop new layers or customize the existing. This is the way you can
customize the whole chart, change the shape of timeline objects or dependency lines
or add an absolutelly new functionality. In each layer you can solve also a mouse
service, there is a built-in support.

• Relationships - Timeline objects (tasks) can have relationship with each other. You
can define constraints on such relationship (for example: this task can start after that
task is finished). In the JavaGantt you need implement one interface on the domain
objects level. And you can subclass layer for dependencies painting to get your own
visualization of dependencies, if the delivered is not suitable for you.

• Actions - JavaGantt comes with predefined set of actions. There are actions for
zoom-in and zoom-out, creating, deleting and moving nodes (and their user-objects)
in the tree hierarchy, and also actions for undo and redo operations. And also
abstract superclasses for the smart building another actions.

• Localization - JavaGantt uses data from resource bundle for treetable column
names and action properties. There is a built-in mechanism to do it without any
programming. If your application contains more resource bundles for more
languages, you can build a multi-lingual gantt chart in a very simple way. JavaGantt
listens to the language changes at runtime and repaints itself if gets an event.

1.2 Quick start

Here is the picture of our demo application distributed with JavaGantt:

JavaGantt 2011.1 Manual

6

The source codes are distributed as examples with JavaGantt, too. All of it you can find in
DEMO directory in our distribution. Let's see what you have to do to build your own
application based on JavaGantt - in 9 java files with about 40 KB texts.

Every object you want to display in JavaGantt treetable must implement
eu.beesoft.gantt.TimelineObject interface. There are methods in this interface to get / set a
start and end date of object, etc. In our example we create class Task for our domain objects.
Our Task is the bean with some additional logic to handle start and end date changes:

public class Task extends AbstractBean implements T imelineObject {
 private String taskId;
 private String name;
 private String description;
 private Date startDate;
 private Date endDate;
 private long effort;
 private boolean milestone;
 private Task supertask;
 private List<Task> subtask;
 private List<Dependency> dependencies;
 private Resource assignee;

 public Task () {
 // empty
 }

 public String getName () {
 return name;
 }

 public void setName (String name) {
 String old = this.name;
 this.name = name;

JavaGantt 2011.1 Manual

7

 firePropertyChange ("name", old, name);
 }

 public Date getStartDate () {
 if ((startDate == null) && isSummary ()) {
 updateStart ();
 }
 return startDate;
 }

 public void setStartDate (Date start) {
 if (Objects.equals (this.startDate, start)) {
 return;
 }
 Date old = this.startDate;
 this.startDate = start;
 if (supertask != null) {
 supertask.updateStart ();
 }
 firePropertyChange ("startDate", old, start);
 }

 private void updateStart () {
 if (isSummary ()) {
 Date thisStart = null;
 List<Task> tasks = getSubtask ();
 for (Task task : tasks) {
 Date taskStart = task.getStartDate ();
 if (taskStart != null) {
 if ((thisStart == null) ||
 thisStart.after (taskStart)) {
 thisStart = taskStart;
 }
 }
 }
 if (thisStart != null) {
 setStartDate (thisStart);
 }
 }
 }

}

Next, we create our model. We implement these methods:

• getColumnClass() - in our treetable are dates in columns 2 and 3 (counted from 0), so
we want to say to the treetable about it

• isCellEditable() - column 1 contains non-editable task ID, other columns are editable

• explore() - method is invoked when treenode is the first time expanded and has no
children yet. In our example we build new nodes for task children.

JavaGantt 2011.1 Manual

8

• moveObject(), deleteObject() and createObject() - these methods are required to
implement by parent class (they are abstract). They are invoked when user executes
corresponding action. JavaGantt makes its work on treetable nodes level, but a
programmer has to serve the domain objects level. So in these methods we handle the
Task objects hierarchy. Note the undo / redo support you should use in these methods.

• getLabel() - we use the LabelLayer layer later in our example and it requires to
implement this method - here it returns a name of a task assignee

Here is the source:

public class Model extends GanttModel {

 public Model () {
 super ();
 }

 @Override
 public Class getColumnClass (int column) {
 switch (column) {
 case 2:
 case 3:
 return Date.class;
 default:
 return super.getColumnClass (column);
 }
 }

 @Override
 public boolean isCellEditable (TreeTableNode node, int column) {
 if (column == 0) {
 return true;
 }
 return (column >= 2);
 }

 @Override
 public void explore (GanttNode node) {
 Task task = (Task) node.getUserObject ();
 for (Task t : task.getSubtask ()) {
 GanttNode child = new GanttNode (this, t);
 if (t.getSubtask ().isEmpty ()) {
 child.setExplorable (false);
 }
 node.add (child);
 }
 }

 @Override
 public boolean moveObject (TimelineObject object,
 TimelineObject newContainer, int newIndex, UndoStep undo)
{
 Task task = (Task) object;

JavaGantt 2011.1 Manual

9

 Task supertask = (Task) newContainer;
 undo.registerObject (task);
 undo.registerObject (supertask);
 Task oldSupertask = task.getSupertask ();
 if (supertask != oldSupertask) {
 if (oldSupertask != null) {
 undo.registerObject (oldSupertask);
 oldSupertask.removeSubtask (task);
 }
 supertask.addSubtask (task);
 }
 supertask.shiftSubtask (task, newIndex);
 return true;
 }

 @Override
 public boolean deleteObject (TimelineObject what, UndoStep undo)
{
 Task task = (Task) what;
 Task parent = task.getSupertask ();
 undo.registerObject (parent);
 undo.registerObject (task);
 parent.removeSubtask (task);
 return true;
 }

 @Override
 public TimelineObject createObject (TimelineObject parent, int
index,
 UndoStep undo) {
 undo.registerObject (parent);
 Task parentTask = (Task) parent;
 Task task = new Task ();
 String id = Gantt.getNextTaskId ();
 task.setTaskId (id);
 task.setName ("Task " + id);
 parentTask.addSubtask (task);
 parentTask.shiftSubtask (task, index);
 return task;
 }

 @Override
 public String getLabel (TimelineObject object) {
 if (object instanceof Task) {
 Resource assignee = ((Task) object).getAssignee
();
 if (assignee != null) {
 return assignee.getName ();
 }
 }
 return null;
 }
}

Now we can create our DemoGantt class that subclasses JavaGantt. It is very simple class, it
has only two methods to support mouse actions:

JavaGantt 2011.1 Manual

10

• getPopupActions() - returns the list of actions to show in popup menu

• doubleClicked() - invokes dialog to edit task properties when user double-clicked on
task node

public class DemoGantt extends JavaGantt {

 private static Action createNodeAction;
 private static Action editNodeAction;
 private static Action deleteNodeAction;
 private static Action indentNodeAction;
 private static Action unindentNodeAction;
 private static Action moveNodeUpAction;
 private static Action moveNodeDownAction;
 private static Action expandAllNodesAction;
 private static Action collapseAllNodesAction;
 private static Action zoomInAction;
 private static Action zoomOutAction;
 private static Action todayAction;
 private static Action undoAction;
 private static Action redoAction;
 private List popupActions;

 public DemoGantt (GanttModel model) {
 super (model);
 }

 @Override
 protected List<Action> getPopupActions (List<Gantt Node>
selectedNodes) {
 if (popupActions == null) {
 popupActions = new ArrayList<Action> ();
 popupActions.add (createNodeAction);
 popupActions.add (editNodeAction);
 popupActions.add (deleteNodeAction);
 popupActions.add (null);
 popupActions.add (indentNodeAction);
 popupActions.add (unindentNodeAction);
 popupActions.add (moveNodeUpAction);
 popupActions.add (moveNodeDownAction);
 }
 return popupActions;
 }

 @Override
 public void doubleClicked (GanttNode node) {
 Task task = (Task) node.getUserObject ();
 TaskPropertiesAction.showTaskProperties (task, th is);
 }
}

To keep the example here as simple as possible we ignore another auxiliary classes (as
actions, form to edit task properties or date cell renderer). All of them you can find in our
DEMO directory.

JavaGantt 2011.1 Manual

11

So what we need is put it all together. It is done in DemoGantt.main() method:

 // create model
 // it extends GanttModel
 GanttModel model = new Model ();

 // create domain objects
 // they should come from database
 // or server in real application
 Resource worker_1 = new Resource ();
 worker_1.setName ("Smith John");

 Task task_1_1 = createTask ("Task 1.1", -20, +1, 92);
 task_1_1.setAssignee (worker_1);

 Task task_1 = createTask ("Task 1", 0, 0, 0);
 task_1.addSubtask (task_1_1);

 Project project = new Project ();
 project.setName ("Project");
 project.addResource (worker_1);
 project.addSubtask (task_1);

 // set created project as gantt model root object
 model.setRootObject (project);

 // create gantt component with "zebra" background
 // and vertical column-line-separators
 JavaGantt gantt = new DemoGantt (model);
 JTreeTable treeTable = gantt.getTreeTable ();
 treeTable.setAlternateBackground (treeTable
 .getDefaultAlternateBackground ());
 treeTable.setShowVerticalLines (true);

 // create columns in gantt tree-table
 // this is the first column with task tree
 GanttColumn column = new GanttColumn ();
 column.setHeaderValue ("Task name");
 column.setBinding ("name");
 gantt.addColumn (column);

 column = new GanttColumn ();
 column.setHeaderValue ("Task ID");
 column.setBinding ("taskId");
 gantt.addColumn (column);

 // resize columns to appropriate width

JavaGantt 2011.1 Manual

12

 gantt.getTreeTable ().pack ();

 // create layers for gantt chart
 // order of layers is important for painting
 gantt.addLayer (new BackgroundLayer ());
 gantt.addLayer (new CalendarLayer ());
 gantt.addLayer (new GridLayer ());
 gantt.addLayer (new TodayLayer ());
 gantt.addLayer (new GanttNodeLayer ());
 gantt.addLayer (new LabelLayer ());
 gantt.addLayer (new DependencyLayer ());

 // create gantt actions
 createNodeAction = new CreateNodeAction (gantt);
 editNodeAction = new TaskPropertiesAction (gantt) ;

 build menu and toolbar, create a swing frame and show it

Note in this example:

• you don't need to act with treenodes - we build our task hierarchy and then we set the
top object (project) as the root object to model

• note setBinding() method usage when we construct treetable columns - by this method
you can tell to the treetable which property of your domain object you want to display
in the column - there is no manual programming of data get / set access

• note also layers setting - you can see that the look of the chart component is
conditional - it depends on the layers you use to paint it. You can write your own
layers to give your application a specific look.

JavaGantt 2011.1 Manual

13

2 JavaGantt installation

Simply unzip downloaded file to appropriate directory (you must create such directory). You
will get this structure:

 JAVAGANTT - this is the ro ot directory
 license.txt - license agreem ent
 release.txt - release notes
 DEMO - source example s
 DOC - documentation directory
 javagantt_2011_1.pdf - JavaGantt manu al
 API - Javadoc direct ory
 LIB - jars directory
 javagantt_2011_1.jar - component libr ary
 gaia_2011_2.jar - BeeSoft genera l library
 launcher.jar - library for la unch apps
 abeona_2011_1.jar - license protec tor

You can copy JAR files to any appropriate place for your development. It is not necessary to
keep them in the installation directory.

2.1 Packages

JavaGantt consists of these packages:

 • eu.beesoft.gantt - contains main classes and interfaces (JavaGantt,
GanttModel, TimelineObject, Dependency)

 • eu.beesoft.gantt.action - contains all implemented actions

 • eu.beesoft.gantt.chart - contains chart related classes (ChartComponent,
Layer, TimeSpan, TimeUnit)

 • eu.beesoft.gantt.treetable - contains treetable related classes (GanttTreeTable,
GanttColumn, GanttNode)

 • eu.beesoft.gantt.undo - contains classes for undo / redo functionality
(UndoStep, StateEditableObject)

JavaGantt strongly uses classes from our Gaia library. This is our company general library
and is available for free. Current version of this library is included in your distribution, but
you can upgrade at any time. These packages from Gaia are used by JavaGantt:

 • eu.beesoft.gaia.swing - contains Swing components and classes for Swing
support

 • eu.beesoft.gaia.util - contains utility classes

JavaGantt 2011.1 Manual

14

2.2 License installation

JavaGantt is component protected by Abeona protection system. You can freely download
this component and use it, but there is one feature built-in: if JavaGantt is not licensed, it
stops to work 10 minutes after it was constructed. You must restart your application which
uses this component.

When you purchase a license for JavaGantt, you will get a license file to your email. Copy
this file where you want to your classpath and then complete your application with a similar
code:

 JavaGantt gantt = new JavaGantt ();

 ... init gantt component

 InputStream is = SomeMyClass.class.getInputS tream (
 "path-to-license-file");
 License license = gantt.setLicense (is);
 if (license == null) {
 throw new RuntimeException (
 "Ooops, something goes wrong here...");
 }

JavaGantt 2011.1 Manual

15

3 Model for JavaGantt

The model for JavaGantt consists of:

• the TimelineObject interface

• the Dependency interface

• the GanttModel class

That's all. Your domain objects must implement the given interfaces. And your model must
subclass the GanttModel class to serve some methods.

3.1 Programming domain objects

Every application works with data objects. These objects are important for the problem area
that an application solves and they are called domain objects. For application, which uses
gantt chart, are domain objects - tasks.

So the domain object class for our example is Task. What do you have to do to let it work
with JavaGantt?

JavaGantt does not prescribe what objects you can use. But it requires to implement interface
eu.beesoft.gantt.TimelineObject. It is a simple interface with methods like getStartDate(),
isMilestone(), and so on. You can implement them very easy.

It is a bit complicated, if you use a summary tasks. This is the task which has subtasks - it is
like container in the task hierarchy (non leaf node). Then you have to arrange synchronization
of date changes in subtasks and in summary task.

In our demo you can see this code for class Task:

public class Task extends AbstractBean implements T imelineObject {

 private String taskId;
 private String name;
 private String description;
 private Date startDate;
 private Date endDate;
 private long effort;
 private boolean milestone;
 private Task supertask;
 private List<Task> subtask;
 private List<Dependency> dependencies;
 private Resource assignee;

JavaGantt 2011.1 Manual

16

 public Task () {
 // empty
 }

 /** Standard getter for property 'name' */
 public String getName () {
 return name;
 }

 /** Standard setter for property 'name' */
 public void setName (String name) {
 String old = this.name;
 this.name = name;
 firePropertyChange ("name", old, name);
 }

 /**
 * Getter for property 'startDate'. Implementa tion of
 * TimelineObject interface.
 * If this task is summary, calculates start d ate from subtasks.
 */
 public Date getStartDate () {
 if ((startDate == null) && isSummary ()) {
 updateStart ();
 }
 return startDate;
 }

 /**
 * Setter for property 'startDate'.
 * Implementation of TimelineObject interface.
 * If this task has a supertask, notifies it a bout the change –
 * invokes method updateStart().
 */
 public void setStartDate (Date start) {
 if (Objects.equals (this.startDate, start)) {
 return;
 }
 Date old = this.startDate;
 this.startDate = start;
 if (supertask != null) {
 supertask.updateStart ();
 }
 firePropertyChange ("startDate", old, start);
 }

 /**
 * For summary task calculates its start date from subtasks.
 */
 private void updateStart () {
 if (isSummary ()) {
 Date thisStart = null;
 List<Task> tasks = getSubtask ();

JavaGantt 2011.1 Manual

17

 for (Task task : tasks) {
 Date taskStart = task.getStartDate ();
 if (taskStart != null) {
 if ((thisStart == null) ||
 thisStart.afte r (taskStart)) {
 thisStart = taskStart;
 }
 }
 }
 if (thisStart != null) {
 setStartDate (thisStart);
 }
 }
 }

}

Remaining methods are implemented in the similar way. Of course, your implementation can
be quite different. TimelineObject interface prescribes some methods, not their body.

Maybe you want to know, what is AbstractBean, which is used as parent class of our Task. It
is class from our Gaia library (it is shipped with JavaGantt) and it serves as support for
property change listeners and their notification.

3.2 Interface TimelineObject

TimelineObject is an interface that prescribes some methods for your domain objects. Each of
these methods concerns on getting / setting data for the gantt chart:

• void addPropertyChangeListener (PropertyChangeListener) - Adds instance of
java.beans.PropertyChangeListener to a listener list.

• Date getStartDate () - Returns the start date of this TimelineObject.

• void setStartDate (Date) - Sets the new start date for this TimelineObject.

• Date getEndDate () - Returns the end date of this TimelineObject.

• void setEndDate (Date) - Sets the new end date for this TimelineObject.

• boolean isSummary () - Returns true if this is a summary object (it contains some
subtasks).

• boolean isMilestone () - Returns true if this is a milestone object.

• void setMilestone (boolean) - Sets the milestone property.

• List<Dependency> getDependencies () - Returns a list of all dependencies between
this TimelineObject and other objects.

• void setDependencies (List<Dependency>) - Sets a list of all dependencies between
this TimelineObject and other objects.

JavaGantt 2011.1 Manual

18

A typical application's domain object that has to implement this interface is a task.

3.3 Interface Dependency

Dependency is an interface that describes dependency between TimelineObjects. Here is the
list of methods you need to implement:

• TimelineObject getSuccessor () - Returns a dependant object.

• void setSuccessor (TimelineObject) - Sets a dependant object.

• TimelineObject getPredecessor () - Returns an object which dependant depends on.

• void setPredecessor (TimelineObject) - Sets object which dependant depends on.

• int getType () - Returns the type of this Dependency (one of the constants
FINISH_TO_START, FINISH_TO_FINISH, START_TO_START,
START_TO_FINISH).

• void setType (int) - Sets the new type of this Dependency (one of the constants
FINISH_TO_START, FINISH_TO_FINISH, START_TO_START,
START_TO_FINISH).

There are some constants defined in the Dependency interface. They define the type of
dependency:

• FINISH_TO_START - Constant for dependency type where dependant cannot begin
until the object it depends on is complete.

• FINISH_TO_FINISH - Constant for dependency type where dependant cannot be
completed until the object that it depends on is completed.

• START_TO_START - Constant for dependency type where dependant cannot begin
until the object that it depends on begins.

• START_TO_FINISH - Constant for dependency type where dependant cannot be
completed until the object that it depends on begins.

3.4 Class GanttModel

GanttModel extends JTreeTable model (eu.beesoft.gaia.swing.TreeTableModel) from Gaia
library. You have to implement these methods:

• TimelineObject createObject (TimelineObject, int, UndoStep) - Creates a new
domain object and adds it as child to parent (you don't need to care about treetable
nodes). Register all modified objects to undo before any change.

JavaGantt 2011.1 Manual

19

• boolean deleteObject (TimelineObject, UndoStep) - Removes given object from its
parent on domain objects level (you don't need to care about treetable nodes). Register
object, its parent and all modified objects to undo before any change.

• boolean moveObject (TimelineObject, TimelineObject, int, UndoStep) - Moves
given object on domain objects level (you don't need to care about treetable nodes).
Register all modified objects to undo before any change.

The methods above are designed to manipulate with objects on the domain objects level. You
don't need to work with treetable nodes.

Here is the implementation of some methods from our demo application:

 @Override
 public boolean moveObject (TimelineObject object,
 TimelineObject newContainer, int newIndex, UndoStep undo)
 {
 Task task = (Task) object;
 Task supertask = (Task) newContainer;
 undo.registerObject (task);
 undo.registerObject (supertask);
 Task oldSupertask = task.getSupertask ();
 if (supertask != oldSupertask) {
 if (oldSupertask != null) {
 undo.registerObject (oldSupertask);
 oldSupertask.removeSubtask (task);
 }
 supertask.addSubtask (task);
 }
 supertask.shiftSubtask (task, newIndex);
 return true;
 }

 @Override
 public boolean deleteObject (TimelineObject what, UndoStep undo){
 Task task = (Task) what;
 Task parent = task.getSupertask ();
 undo.registerObject (parent);
 undo.registerObject (task);
 parent.removeSubtask (task);
 return true;
 }

 @Override
 public TimelineObject createObject (TimelineObject parent,
 int index, UndoStep undo) {
 undo.registerObject (parent);
 Task parentTask = (Task) parent;
 Task task = new Task ();
 String id = Gantt.getNextTaskId ();
 task.setTaskId (id);
 task.setName ("Task " + id);
 parentTask.addSubtask (task);
 parentTask.shiftSubtask (task, index);
 return task;
 }

JavaGantt 2011.1 Manual

20

Note, there is an UndoStep object used as argument in these methods. It supports undo / redo
operations.

If you want to paint in the chart component on the time lines some texts (if you use
LabelLayer or TooltipLayer), you need override these methods in GanttModel subclass:

• String getLabel (TimelineObject) - Returns label text for given object. This text uses
LabelLayer to paint additional info to timeline object. Typically, for a task is name of
the assignee probably the best result.

• String getTooltipText (TimelineObject) - Returns tooltip text for given object.

GanttModel supports lazy loading for treetable data. The possibilities of
ExplorableTreeNode, which is an ancestor of GanttNode, is emplyed here. When node is
expanded and was not explored still, method explore(GanttNode) is invoked.

• void explore (GanttNode) - This method is called by GanttNode for data loading.

Override this method to loading children of your domain object. In the typical lazy-loading
implementation:

• get a user object from given node

• load children of user object and build hierarchy

• for each loaded child create instance of GanttNode and set child as its user object

• add each created instance of GanttNode as a child to the given node

JavaGantt 2011.1 Manual

21

4 JavaGantt component

JavaGantt is the Swing component which interacts with GanttModel. It covers these
components:

• GanttTreeTable - displays treetable on the left side of gantt chart

• ChartHeader - displays header (months, dates) for the right side of the gantt chart

• ChartComponent - displays gantt drawing area (timeline objects and dependencies)

These components are constructed in the initialization phase and developer has no impact to
it. You can change their properties only.

4.1 Getting standard sub-components

The standard JavaGantt subcomponents are accessible by these methods:

• GanttTreeTable getTreeTable () - Returns the tree table object of this JavaGantt.

• ChartComponent getChartComponent () - Returns the instance of
ChartComponent.

• ChartHeader getChartHeader () - Returns the instance of ChartHeader.

• UndoManager getUndoManager () - Returns the undo manager for JavaGantt
operations.

• getDividerLocation () - Returns divider location of the split pane (between treetable
and chart component).

• setDividerLocation (int) - Sets the divider location of the split pane (between
treetable and chart component).

4.2 Building a treetable

Here are JavaGantt methods you can use to build a chart:

• GanttModel getModel () - Returns GanttModel instance for this JavaGantt object.

• void setModel (GanttModel) - Sets the new model for JavaGantt object.

• void addColumn (GanttColumn) - Appends a column to the end of table columns.

JavaGantt 2011.1 Manual

22

• GanttColumn addColumn (String, String) - Appends a column to the end of table
columns.

• void removeColumn (GanttColumn) - Removes the column from the treetable.

• void removeColumn (String) - Removes a column with given key from the treetable.

The methods working with columns are implemented in GanttTreeTable and methods in
JavaGantt simply redirect to them.

4.3 Building a chart

Here are JavaGantt methods you can use to build a chart:

• void addLayer (Layer) - Adds given layer to the list of chart component layers.

• void addLayer (Layer, int) - Adds given layer to the list of chart component layers.

• void removeLayer (Layer) - Removes given layer from the list of chart component
layers.

• List<Layer> getLayers () - Returns the list of chart component layers.

All of these methods are implemented in ChartComponent and methods in JavaGantt simply
redirect to them.

4.4 Mouse support

JavaGantt has built-in mouse support, so you don't need to work with mouse listeners. Use
these methods instead:

• void doubleClicked (GanttNode) - Invoked when user double clicked on the node. In
this implementation does nothing. Typically, you should display properties dialog for
node's user object. In our demo application we construct and display task properties
form in this method.

• List<Action> getPopupActions (List<GanttNode>) - Returns a list of actions for
selected nodes. Invoked when user right clicks on the node(s) in treetable. In this
implementation does nothing and returns null. If you will override it and return a list
of actions, JavaGantt constructs popup menu and displays it.

Method doubleClicked() is invoked from treetable and also from gantt chart component. The
getPopupActions() is treetable method only. If you return a non-null list, the popup menu is
displayed.

JavaGantt 2011.1 Manual

23

4.5 Localization

The JavaGantt components (treetable columns and actions) intense use resource bundle
technique. These methods of JavaGantt are about resource bundles:

• String getResourceBundleName () - Returns the name of the resource bundle.

• void setResourceBundleName (String) - Sets the name of resource bundle. This
name must according to java.util.ResourceBundle specification. Resource bundle is
then used to construct treetable columns and gantt actions.

But resource bundle may be accessed also if you don't set its name explicitly. So how does it
work?

The main class for these purposes is eu.beesoft.gaia.util.Language. In the Swing environment
is a singleton (but it has a public constructor, so you can create as many instances as you need
in server environment). The singleton is accessible via method

 Language.getInstance ();

which returns last created instance of Language. Using Language has big advantage when
you change application's Locale. Setting this into Language provides for all
LanguageListeners notification to easy reloading texts from resource bundles.

When you take a look at Language API documentation, you can see method getText() with
first argument either a resource bundle name or some object. These methods are used from
JavaGantt and its subcomponents.

1. if resource bundle name is set (by method JavaGantt.setResourceBundleName()), this
resource bundle is constructed and used. Note, that resource bundle name must have a
form of class name.

2. if no resource bundle name is set, then the name of current JavaGantt class (its
subclass) is taken and used to find resource. If resource is not found, or key with given
name is not found, Language class takes a superclass name and repeats searching.

So if you don't use method JavaGantt.setResourceBundleName(), you must create a
properties file in the same package where your JavaGantt subclass is stored and with the
same name as thas subclass has. In that case it will work without explicitly setting the
resource bundle name and you can use the advantages of inheritance.

JavaGantt 2011.1 Manual

24

4.6 License protection

JavaGantt is protected by the Abeona protection system.

It works without any license, but 10 minutes after JavaGantt was created it displays a warning
message and stops to paint itself. So if you want to develop an application, which will work
more than 10 minutes, you need purchase the license from BeeSoft. License is plain
properties file protected by digital signature and here are methods to tell JavaGantt about
license:

• License setLicense (InputStream) - Loads license from given licenseStream. This is
a key method of library protection system.

• License getLicense () - Returns instance of valid License or null.

The first method has an input stream from license file as argument, and returns newly created
License instance. You don't need to work with this object, just check for non-null return value.
If it is null, you have some problem with that file.

JavaGantt 2011.1 Manual

25

5 Gantt Tree Table

GanttTreeTable is the tree table for gantt chart. It is the left-located component of the
JavaGantt.

GanttTreeTable is the descendant of the eu.beesoft.gaia.swing.JTreeTable (you can read
about it in the next chapter, and the next informations are accessible in API documentation).

5.1 JTreeTable description

The eu.beesoft.gaia.swing.JTreeTable class is a combination of a JTree and a JTable - a
component capable of both expanding and contracting rows, as well as showing multiple
columns of data.

This component always displays a tree in the first column and the additional data in the next
columns. You can see its usage in a very simple example of the directory tree.

This component has the next features:

• it inherits from its parent class ability to hide / show columns

• right click on the table header shows popup menu with list of all columns - this is the
user way to show / hide columns

• also inherits possible "zebra" look (even rows can have an alternate background color)

• the tree is always painted in the first column of the treetable

JavaGantt 2011.1 Manual

26

• as its model you must use eu.beesoft.gaia.swing.TreeTableModel or subclasse it (that's
what GanttModel does)

• descendants of the eu.beesoft.gaia.swing.TreeTableNode are only nodes acceptable in
the JTreeTable (and GanttNode is the descendant of TreeTableNode)

5.2 GanttNode

GanttNode is the only javax.swing.tree.TreeNode acceptable by a gantt tree data structure. It
is a final class, so there is no way to customize it.

Here are the key features of the GanttNode:

• a TimelineObject is used as an user object in tree node. Each user object must
implement this interface.

• it inherits ability of the data lazy-loading

• although GanttNode is a part of the treetable, it holds some informations for chart
component (the bounds of timeline, for example)

5.3 Gantt column and data binding

GanttColumn represents a column in the GanttTreeTable. It is a descendant of
javax.swing.table.TableColumn . It supports:

• resource bundle usage for column label

• data binding for getting / setting values from GanttNode's user object

Data binding is implemented by eu.beesoft.gaia.util.Miner class. It gets values from any
object and sets them in. In the first step via property accessors (getter / setter) and if
appropriate accessor is not found, on the field access level. More informations about Miner
class you can find in API documentation.

GanttModel has implemented these methods related to data binding:

• Miner getMiner () - Returns the current instance of the Miner used by this
GanttModel.

• void setMiner (Miner) - Sets a new instance of the Miner for use by this GanttModel.
The Miner class is designated to obtain property value on method or field level from
any object. You can subclass Miner class to reach your requirements.

• Object getValueAt (TreeTableNode, int) - Returns value from given node and for
given column.

• void setValueAt (TreeTableNode, int, Object) - Sets given value to the user object
in the node and column.

JavaGantt 2011.1 Manual

27

All you need to do for automated data binding is to set property name to gantt column. Then
methods getValueAt() and setValueAt() in GanttModel can work fully automatically. If your
domain objects are not suitable for data binding, override methods getValueAt() and
setValueAt(). You can also subclass Miner class and set it to GanttModel by method
setMiner(Miner).

These methods support data binding in GanttColumn:

• String getBinding () - Returns binding for this column. Binding is a property name
(or dot-separated chain of property names). A value for this column is mined from this
property.

• void setBinding (String) - Sets binding for this column. Binding is a property name
(or dot-separated chain of property names). A value for this column is mined from this
property.

Data binding works very simply (from the programmer's point of view). It uses class
eu.beesoft.gaia.util.Miner to get (and also set) the value from (to) object. Value is defined by
the property or field name. Miner tries to find getter for property, and if this was not
successful, it uses field access.

So all you need to do is to tell the column about property (field) to display:

 column.setBinding ("startDate");

You can use dot-convention for property name, if your property is not in given object, but in
referenced object. In our demo application has class Task the field assignee. So if you want to
display a task assignee's name in column, you can set binding this way:

 column.setBinding ("assignee.name");

5.4 Localization

A GanttColumn has built-in support for resource bundle usage. These methods are
implemented:

• String getResourceBundleKey () - Returns key used for resource bundle.

• void setResourceBundleKey (String) - Sets resource bundle key. This key is used
when accessing resource bundle to get (localized) column label.

JavaGantt 2011.1 Manual

28

• void languageChanged (Language) - Implements LanguageListener. Invoked when
environment changes. Reinitializes column header from resource bundle.

First two methods operates with resource bundle key. It is a key under which is stored
localized text in resource bundle. The third method is a listener method and is invoked, when
you change language settings in application. It is invoked from eu.beesoft.gaia.util.Language.

So you don't need to invoke method column.setHeaderValue (). This is the usual way, known
from JTable and its components. You can set a key for column name in resource bundle
instead:

 column.setResourceBundleKey ("columnStartDate");

and in your JavaGantt resource bundle to define something like:

 columnStartDate=Start date

When you or user changes the application language environment, you have to take a care only
of localized resource bundle.

JavaGantt 2011.1 Manual

29

6 Gantt Chart

Gantt chart is located on the right side of the JavaGantt component. It consists of:

• chart header

• chart component

All classes of the gantt chart are in the package eu.beesoft.gantt.chart.

There are two important classes for whole package:

• TimeUnit

• TimeSpan

TimeUnit is an enumeration for time unit granularity. It contains constants from seconds to
year and some useful methods.

TimeSpan envelopes date range (start time - end time). Instances of TimeSpan are created by
ChartComponent in its updateChart() method. They contains information about:

• start date of time span

• end date of time span

• whether it is a holiday or weekend

• x-position of this time span in chart component coordinates

• width of this time span in pixels

All of these informations are used by chart component to prepare painting.

The painting in gantt chart is implemented through the layers. A Layer is an abstract class that
provides functionality to paint chart and interact with a user.

When you construct a gantt, you set to the ChartComponent several layers. Chart component,
when painting, iterates through them and invokes the paint(Graphics) method on each of
them. The order you add layers to ChartComponent is important. Each layer paints just the
things it is programmed for. You can assemble the chart from the layers as you need. So the
chart preparation can look like this:

 JavaGantt gantt = ...
 gantt.addLayer (new BackgroundLayer ());
 gantt.addLayer (new CalendarLayer ());
 gantt.addLayer (new GridLayer ());
 gantt.addLayer (new TodayLayer ());
 gantt.addLayer (new GanttNodeLayer ());
 gantt.addLayer (new LabelLayer ());
 gantt.addLayer (new DependencyLayer ());

JavaGantt 2011.1 Manual

30

All these layers are available in the JavaGantt distribution.

But you are not limited to use just these layers. You can write your own, or modify existing,
or to omit some of them, to get the original look for your application.

6.1 Chart header

ChartHeader paints headers above the ChartComponent instance. This component contains
two headers - major and minor - and their models.

HeaderModel is used to paint major or minor header for ChartComponent. It contains data for
header columns.

HeaderColumn is a subclass of javax.swing.table.TableColumn to hold list of TimeSpan
instances. These instances are used to calculate sizes of the column.

There is very low probability you need to customize these classes. They are created by
JavaGantt in initialization phase. All you need to do is to use them.

6.2 Working with the time scale

The Gantt chart time scale is significant for gantt chart span, for the chart header content and
also for chart clarity and readability.

All classes of the gantt chart header and the time scale are in the package
eu.beesoft.gantt.chart:

• TimeUnit is an enumeration for time unit granularity. It contains constants from
seconds to year and some useful methods.

• TimeSpan envelopes date range (start time - end time). Instances of TimeSpan are
created by ChartComponent in its updateChart() method. They contain information
about start and end date of time span, whether it is a holiday or weekend, x-position of
this time span in chart component coordinates and width of this time span in pixels.

• ChartHeader paints headers above the ChartComponent instance. This component
contains two headers - major and minor - and their models.

• HeaderModel is used to paint major or minor header for ChartComponent. It contains
data for header columns.

• HeaderColumn is a subclass of javax.swing.table.TableColumn to hold list of
TimeSpan instances. These instances are used to calculate sizes of the column.

There is very low probability you need to customize these classes. They are created by
JavaGantt in initialization phase. All you need to do is to use them.

JavaGantt 2011.1 Manual

31

Zoom policy

The zoom policy defines the way the chart is zoomed in / out. There is defined an interface
ZoomPolicy and also its default implementation built in ChartComponent. But maybe you
will need create your own.

The ZoomPolicy requires to implement 4 methods:

• public int getStepCount () - returns the step count for this policy

• public TimeUnit getMajorStep (int index) - returns time granularity for major header

• public TimeUnit getMinorStep (int index) - returns time granularity for minor header

• public int getTimeSpanWidth (int index) - returns width (in pixels) of TimeSpan
instances for given step.

They could be implemented in this manner, for example:

public class MyZoom implements ZoomPolicy {

 private TimeUnit[] majorStep;
 private TimeUnit[] minorStep;
 private int[] widthStep;

 public Zoom () {
 majorStep = new TimeUnit[5];
 minorStep = new TimeUnit[5];
 widthStep = new int[5];

 majorStep[0] = TimeUnit.WEEK;
 minorStep[0] = TimeUnit.DAY;
 widthStep[0] = 80;

 majorStep[1] = TimeUnit.MONTH;
 minorStep[1] = TimeUnit.DAY;
 widthStep[1] = 40;

 majorStep[2] = TimeUnit.MONTH;
 minorStep[2] = TimeUnit.WEEK;
 widthStep[2] = 20;

 majorStep[3] = TimeUnit.YEAR;
 minorStep[3] = TimeUnit.WEEK;
 widthStep[3] = 10;

 majorStep[4] = TimeUnit.YEAR;
 minorStep[4] = TimeUnit.MONTH;
 widthStep[4] = 5;
 }

 public int getStepCount () {
 return majorStep.length;
 }

JavaGantt 2011.1 Manual

32

 public TimeUnit getMajorStep (int index) {
 return majorStep[index];
 }

 public TimeUnit getMinorStep (int index) {
 return minorStep[index];
 }

 public int getTimeSpanWidth (int index) {
 return widthStep[index];
 }
}

How to customize text for chart header

When HeaderModel (re)constructs itself, it calls method GanttModel.getChartHeaderText
(Date, TimeUnit, boolean) for each relevant date. So this method in GanttModel is the place
to customize chart header texts.

What you have to do is to return text for given Date and time granularity (TimeUnit). For
example, if TimeUnit is YEAR, you will return "2010" if date is of that year. The third
(boolean) argument distinguishes between request for major and minor header, because you
may want to display the same value differently in each other header.

6.3 Chart component

A ChartComponent is one of the most meaningful sub-components of JavaGantt. It is painted
on the right side of JavaGantt (there is an instance of JTreeTable on the left).

It co-ordinates painting with registered instances of the Layer class and dispatches events to
them.

The ChartComponent is created by JavaGantt in initialization phase and there is no way to
customize it.

6.4 Layer

A layer is an object having a graphical representation that can be displayed in the gantt chart
and that can interact with the user.

The Layer class is the abstract superclass of the each gantt chart layer.

JavaGantt 2011.1 Manual

33

The gantt ChartComponent holds a stack of user-defined layers. When the method
paint(Graphics) on ChartComponent is invoked, it walks through this stack (in order the
layers were added) and if the layer is visible (method isVisible() returns true) calls method
paint(Graphics) on it.

Here are the methods that eu.beesoft.gantt.chart.Layer class provides:

• JavaGantt getGantt () - Returns instance of JavaGantt to which this Layer belongs.

• boolean isVisible () - Returns value of property 'visible'.

• void setVisible (boolean) - Sets a new value for property 'visible'. Layer is painted
only if visible = true.

• List<GanttNode> getPaintedNodes () - Returns list of currently on-screen visible
and painted gantt nodes.

• int getPosition (Date) - Returns x-coordinate for given date.

• void mouseClicked (MouseEvent) - Invoked when the mouse has been clicked on a
component. In this implementation does nothing.

• void mouseEntered (MouseEvent) - Invoked when the mouse enters a component. In
this implementation does nothing.

• void mouseExited (MouseEvent) - Invoked when the mouse exits a component. In
this implementation does nothing.

• void mousePressed (MouseEvent) - Invoked when a mouse button has been pressed
on a component. In this implementation does nothing.

• void mouseReleased (MouseEvent) - Invoked when a mouse button has been
released on a component. In this implementation does nothing.

• void mouseMoved (MouseEvent) - Invoked when the mouse button has been moved
on a component (with no buttons no down). In this implementation does nothing.

• void mouseDragged (MouseEvent) - Invoked when a mouse button is pressed on a
component and then dragged. In this implementation does nothing.

There is a set of implemented layers you can use. Of course, you can write your own -
subclass eu.beesoft.gantt.chart.Layer and implement method paint(Graphics).

You can also modify an existing layer - subclass it and override method you need.

The good news is that you don't need to take a care of adding objects to layers and their
synchronization with JavaGantt model. Layers work directly with JavaGantt model nodes. A
GanttTreeNode holds its bounds - it is a rectangle where this node is painted in JavaGantt
ChartComponent (Layer) coordinates. This can your work greatly facilitate.

Now we can see how to customize some layer. We have the GanttNodeLayer which paints
timeline objects (tasks, summaries and milestones). And now we want to paint the tasks
differently. We want to paint task's time line with colorized information about task
completion.

JavaGantt 2011.1 Manual

34

The easiest way to implement this is to subclass GanttNodeLayer and override method
paintTask():

public class MyLayer extends GanttNodeLayer {

 @Override
 protected void paintTask (GanttNode node, Graphics g) {
 Rectangle bounds = node.getBounds ();
 int x = bounds.x;
 int y = bounds.y;
 int width = bounds.width;
 int height = bounds.height;

 // don't fill whole space for node, it looks ugli ly
 if (width > 6) {
 x += 2;
 width -= 5;
 }
 y = y + height / 4 - 1;
 height = height / 2 - 1;

 // paint border around task time line
 g.setColor (getTaskBorderColor ());
 g.drawRect (x, y, width, height);

 // edit coordinates
 ++x;
 ++y;
 --width;
 --height;

 // get the task completion and compute threshold
 Task task = (Task) node.getUserObject ();
 double completion = task.getCompletion();
 // value between 0.0 and 100.0
 int threshold = (int) (width * completion) / 100;

 // paint completed part of task with darker color
 if (threshold > 0) {
 g.setColor (getTaskInteriorColor ().darker());
 g.fillRect (x, y, threshold, height);
 }

 // paint incomplete part of task with brighter co lor
 if (threshold < 100) {
 g.setColor (getTaskInteriorColor ().brighter());
 g.fillRect (x + threshold, y, width - threshold,
 height);
 }
 }
}

JavaGantt 2011.1 Manual

35

6.5 Implemented layers

Here is the list of the implemented layers you can use:

• BackgroundLayer - Paints colored background for gantt chart.

• CalendarLayer - Paints background for weekend days.

• DependencyLayer - Paints dependencies between gantt nodes.

• GanttNodeLayer - Paints gantt nodes as time-line objects on chart component and
processes moving and dragging of nodes by mouse.

• GridLayer - Paints grid (horizontal and vertical lines) in gantt chart component.

• LabelLayer - Paints text label beside node.

• TodayLayer - Paints strong vertical line on chart component at given date (usually
today).

JavaGantt 2011.1 Manual

36

7 Gantt actions

As a standard Swing component, JavaGantt is controlled by actions.

7.1 AbstractGanttAction

AbstractGanttAction is a base class for gantt component actions. It is not necessary to
subclass this class, you can use any action. But AbstractGanttAction offers these features:

• ability to return JavaGantt instance

• built-in resource bundle and language support

• undo / redo support

AbstractGanttAction processes actionPerformed (ActionEvent) method to offer undo / redo
support. It invokes executeAction (ActionEvent, UndoStep) method, which is an abstract
method, and if it returns true, registers all changes from UndoStep in UndoManager.

7.2 Localization

AbstractGanttAction gets its properties from resource bundle. All action properties (currently:
text, icon and tooltip) must be described in resource bundle. This process is automated, so you
must observed some rules:

• each property name must be prefixed by fully qualified or simple action class name

• property name for action text (label) is text

• property name for action icon is icon - it is path to icon image on classpath

• property name for action tooltip text is tooltip

For example, if your action class is mydomain.mypackage.MyAction, then in the resource
bundle should be:

mydomain.mypackage.MyAction.text=Text for action
mydomain.mypackage.MyAction.icon=mydomain/mypackage /MyIcon.gif
mydomain.mypackage.MyAction.tooltip=This is a toolt ip for my action

or shorter:

JavaGantt 2011.1 Manual

37

MyAction.text=Text for action
MyAction.icon=mydomain/mypackage/MyIcon.gif
MyAction.tooltip=This is a tooltip for my action

7.3 Undo / Redo

JavaGantt uses Swing undo package functionality to provide support for undo/redo
operations.

There are two classes in eu.beesoft.gantt.undo package for that purpose:

• UndoStep

• StateEditableObject

StateEditableObject implements javax.swing.undo.StateEditable interface. Its constructor
takes one object, and StateEditableObject can this object introspect and to remember changed
properties.

UndoStep is the descendant of javax.swing.undo.CompoundEdit class. It serves as a container
of all operations for one undo / redo step. It offers two methods:

• void registerObject (Object) - Registers object to store / restore its state. If given
object does not implement interface javax.swing.undo.StateEditable, the object is
covered by StateEditableObject to make it eligibly for undo / redo operations. Then is
object registered and its pre-state is obtained.

• void end () - Gets the post-edit state of the required objects and ends the edit.

If you want to process undo / redo, you have to:

1. create an instance UndoStep

2. call registerObject(Object) for each object that can be changed in executed action
before any change occurs

3. call end() after action finished

4. obtain from JavaGantt instance an UndoManager

5. on UndoManager instance invoke addEdit (UndoStep) method

AbstractGanttAction supports all of these steps except step 2. So what you have to do, if your
action is deriver from AbstractGanttAction, is to call registerObject(Object) for each object
that can be changed in method executeAction (ActionEvent, UndoStep) only.

JavaGantt 2011.1 Manual

38

7.4 Implemented actions

Here is the list of the implemented actions you can use:

• CollapseAllNodesAction - This action collapses all nodes in the JavaGantt treetable.

• CreateNodeAction - This action asks GanttModel.createObject(TimelineObject, int,
UndoStep) to create new domain object and then creates a new GanttNode} and
includes it in hierarchy.

• DeleteNodeAction - Action asks GanttModel.deleteObject(TimelineObject,
UndoStep) to delete domain object and if it is successful, removes the node from tree
hierarchy.

• ExpandAllNodesAction - This action expands all nodes in the JavaGantt treetable.

• IndentNodeAction - This action asks GanttModel.moveObject(TimelineObject,
TimelineObject, int, UndoStep) to move a domain object into domain hierarchy and
then moves also corresponding GanttNode.

• MoveNodeDownAction - This action asks GanttModel.moveObject(TimelineObject,
TimelineObject, int, UndoStep) to move a domain object into domain hierarchy and
then moves also corresponding GanttNode.

• MoveNodeUpAction - This action asks GanttModel.moveObject(TimelineObject,
TimelineObject, int, UndoStep) to move a domain object into domain hierarchy and
then moves also corresponding GanttNode.

• RedoAction - This action asks JavaGantt.getUndoManager() to redo next operation.

• TodayAction - This action scrolls the date/time columns in the ChartComponent} so
the column with today date is visible. You can set any date for this action as today
date.

• UndoAction - This action asks JavaGantt.getUndoManager() to undo last operation.

• UnindentNodeAction - This action asks GanttModel.moveObject(TimelineObject,
TimelineObject, int, UndoStep) to move a domain object into domain hierarchy and
then moves also corresponding GanttNode.

• ZoomInAction - This action zooms in the content of ChartComponent.

• ZoomOutAction - This action zooms out the content of ChartComponent.

JavaGantt 2011.1 Manual

39

8 Shipping to customer

When you will deploy your application based on the JavaGantt at your customer (or you will
ship it), your product must contain libraries from our JavaGantt lib directory:

• javagantt_2011_1.jar
• gaia_2011_2.jar
• abeona_2011_1.jar

Also must include the product license stored in JavaGantt root directory:

• license.txt

This text file must be accessible and readable by the user of your product.

Your distribution also must include the license protection file you obtain when you purchase
JavaGantt.

• javagantt.license

You should store this file to your classpath (e.g. into some of your JAR files).

No other files are required.

