JavaGantt 2011.1

Manual

© BeeSoft, 2011

www.beesoft.eu

JavaGantt 2011.1 Manual

Content

R {11 o T (1 T3 1 o o PP 4
1.1 JavaGantt fRALUIESuuuueiiiiee it eeeeee et rree e 4
O O U [od] = g S 5

2 JavaGantt INSTAllAtioNoouuuiiii e 13
2.1 PACKAGES ... oottt et aeeaaaan 13
2.2 License iNStallation...............iiiiiiiiiieeiiee e 14

3 MOdel fOr JAVAGANTE.....coiiiieeeiiiiii e ettt e et e e aaeae 15
3.1 Programming domain ODJECESuuuuuns e ettt 15
3.2 Interface TiIMeliNEODJECT........i i e 17
3.3 Interface DEPENUENCYccceeiiiiii st ettt e e et et et e e e e eeeaabanneeeeeeene 18
3.4 Class GanttMOAELuuiiiiiiiiiii e 18

4 JavaGantt COMPONENTt et e et e e e e eea e e e e aeans 21
4.1 Getting standard SUD-COMPONENLScommmmmeeeeeerrinnneeeeeeeeiiii e eeeennaas 21
4.2 Building atreetablecoooiiiiiii e 21
4.3 BUIldING @ CRAIT ...t e e e e eenes 22
4.4 MOUSE SUPPOIT. ..ottt ittt et e et et e et e et e et e et e e et e ea e eaaaeenns 22
4.5 LOCANZALION ... e rem et 23
G W Tt T KT =N o] o1 (=T ox 1o] o [P 24

5 Gantt Tree Table ... e 25
5.1 JTreeTable deSCrPLONiiiiiiii e iermms ettt e e eeenns 25
T2 € 7= 1111 (o o [26
5.3 Gantt column and data BiNdiNg e eeeeeiiee e 26
5.4 LOCAHZALION ...uuuiiieeii ittt et e e e e e 27

L =T | 1 A o = PP 29
6.1 ChAIt NBAUETot e e e e e e 30
6.2 Working with the time SCaleoouiiiiiie e 30
6.3 Chart COMPONENTuiiiiiiii e e rtae e e e e aee 32
.4 LAY Bl et e e 32
6.5 IMPIEMENLEA [AYEIS ... e 35

A 1= U118 Tox 1[0 o K SRR PP PP 36
7.1 ADSHrACIGANTIACTION. ... e e e e e e s 36
A W o Vo7 1. (o] o 36
7.3 UNAO T REUOD ... i ettt et e e e e e 37

JavaGantt 2011.1 Manual

7.4 Implemented aCtiONS........cooiiuiiii e 38

8 Shipping to customer

JavaGantt 2011.1 Manual

1 Introduction

JavaGantt is the Swing component for the Java gantt chantipg and editing.

TreeTable header Column Major header Chart companent

(autornatic data binding, Minar header

hide f show on right click) /

il L8]
Taskname TaskID | Starbdate | Finish date e é&l ’/
: ok o | ek 10 | wieek 11 | wieek
J Project 16.2.2010 | 26.3.2010 -
_j Task 1 3 16.2.2010 | 12.3.2010 -
- Task1.1 e} 16.2.2010 9,53.2010 mith John

_EE (G4l :

YL
:Krugma_n George

o Task [Mew Task 12.3.2010
Y Task 2 [5 Task Properties 18.3.2010

- Task @ Delete 10| 15.3.2010 I [cvan Annie
o Task——— 010 | 17.3.2010
- Task, = Indenk 10 | 18.3.2010
Y Task 3 5 Lnindent 10 | 26.3.2010
-4 Task \ i0 16.3.2010
o Task G0 Mavelp 10 | 14.3.2010
b Task Il Move Down 10| 26,3.2010
=y Task 4 7 24.3.2010
@ Task4.1 312 16.3.2010
\e Task42 13 17.3.2010 Ei :
"Febra" hackground Summan \ Task \ ilestone
Context sensitive popup menu Today mark Dependency Wigekend days

It is powerful component, despite its complexitgdsed on easy-to-use programming. You
can see it has thatandard gantt chart” look. But almost all you see can be customizedirYo
chart can look quite differently. This manual catphyou to teach how you can do it.

1.1 JavaGantt features

This page contains descriptions of JavaGantt's essstntial features:

« Standard view - Standard chart appearance and behavior custblmigattings.
There are a treetable and a chart component sidelbyThe treetable on the left
hand side, and the chart component on the riglactixas you know it from other
gantt components. But you can modify their appezas you need.

« Advanced treetable - The treetable has a few very interesting featutes:derived
from eu.beesoft.gaia.swing.JTreeTable, so it has the features of JTable and JTree -
it is easy to use it, if you are familiar with Swiprogramming. JTreeTable can
paint"zebra" background and also show / hide columns on usectgsn (right
click on treetable header displays popup menu gatbmn names to hide / show).
There is also built-in support for the context ppmoenu and double click
processing.

JavaGantt 2011.1 Manual

- Data binding - Model for JavaGantt is oriented on the easy fauogning and
usage. One of its features is automated data lgjndiou can set a name of the
property of your domain object you want to displagome column and JavaGantt
displays it without any more programming. And theng it does with setting user-
changed visual data to domain object.

« Lazyloading - If your application works with a large datasets suitable to load
to the memory just the visible part of the dataa@antt treetable listens to
treeexpand event and if node is expanded for thetiine, it invokes method
explore() on GanttModel. This is the place you can load data for nodegs alsject
and build subnodes. Do you know any more simpletsol?

- Layers- Gantt chart is painted in some layers. You davose which layers you
want install into gantt chart, and also you carelidhow layers at runtime. Each
layer has specific purpose and paints only the gsdgis programmed for. You
can develop new layers or customize the existihis & the way you can
customize the whole chart, change the shape ofitimebjects or dependency lir
or add an absolutelly new functionality. In eacyelayou can solve also a mouse
service, there is a built-in support.

« Relationships - Timeline objects (tasks) can have relationship wach other. You
can define constraints on such relationship (faneple: this task can start after t
task is finished). In the JavaGantt you need implenone interface on the domain
objects level. And you can subclass layer for ddpanies painting to get your own
visualization of dependencies, if the deliveredas suitable for you.

« Actions - JavaGantt comes with predefined set of actibhsre are actions for
zoom-in and zoom-out, creating, deleting and mowviades (and their usebjects)
in the tree hierarchy, and also actions for undbraxo operations. And also
abstract superclasses for the smart building anaittens.

« Localization - JavaGantt uses data from resource bundle fetraioée column
names and action properties. There is a built-inlrarism to do it without any
programming. If your application contains more tese bundles for more
languages, you can build a multi-lingual gantt tiraavery simple way. JavaGai
listens to the language changes at runtime andntspeself if gets an event.

1.2 Quick start

Here is the picture of our demo application disttéal with JavaGantt:

JavaGantt 2011.1 Manual

& JGantt demo =100 =]
File Edit Task Resource Help
IEEgece a9 e [gem
Task name Task Il | Skart date | Finish date - MrECA01D - -
ek o ek 10 Week 11 | week
4§ Project 16.2.2010 | 26.3.2010 -
. 0q Task 1 3 16.2.2010 | 12.3.2010 5 —
L e Taskid o 16.2.2010 | 9.3.2010 Srrith John
12.3.2010 %gman zearge
18.3.2010 e 7
I'_F—‘x.i Dielske 15.3.2010 I ['cvian Annie
------ 17.3.2010 | —)
= Indent 18.3.2010 &
<5 Uritidere: 26.3.2010 P
16.3.2010 e
47 Move Up 14.3.2010 E—
JL Move Dowin 26.3.2010 ———
4 Taskd s 24.3.2010 P
co# Task4d 12 11,3.2010 | 16.3.2010 —_—— -
------ ® Task42 |13 14.3.2010 | 17.3.2010 1] | _pj—l

The source codes are distributed as examples awtGantt, too. All of it you can find in
DEMO directory in our distribution. Let's see wiyati have to do to build your own
application based on JavaGantt - in 9 java filek awbout 40 KB texts.

Every object you want to display in JavaGantt &bkt must implement
eu.beesoft.gantt. TimelineObject interface. There are methods in this interfacgeti/ set a
start and end date of object, etc. In our examgemate clastask for our domain objects.
Our Task is the bean with some additional logic to hantdet@nd end date changes:

public class Task extends AbstractBean implements T

private String taskld;
private String name;
private String description;
private Date startDate;
private Date endDate;
private long effort;

private boolean milestone;
private Task supertask;
private List<Task> subtask;
private List<Dependency> dependencies;
private Resource assignee;

public Task () {
/I empty
}

public String getName () {
return name;
}

public void setName (String name) {
String old = this.name;
this.name = name;

imelineObject {

JavaGantt 2011.1 Manual

firePropertyChange ("name”, old, name);

public Date getStartDate () {
if ((startDate == null) && isSummary ()) {
updateStart ();
}

return startDate;

public void setStartDate (Date start) {
if (Objects.equals (this.startDate, start)) {
return;
}

Date old = this.startDate;

this.startDate = start;

if (supertask !'=null) {
supertask.updateStart ();

}

firePropertyChange ("startDate", old, start);

private void updateStart () {
if (isSummary ()) {
Date thisStart = null;
List<Task> tasks = getSubtask ();
for (Task task : tasks) {
Date taskStart = task.getStartDate ();
if (taskStart !'= null) {
if ((thisStart == null) ||
thisStart.after (taskStart)) {
thisStart = taskStart;

}

}
if (thisStart != null) {

setStartDate (thisStart);
}

Next, we create our model. We implement these nakstho

+ getColumnClass() - in our treetable are dates in columns 2 ana@r{ted from 0), so
we want to say to the treetable about it

+ isCellEditable() - column 1 contains non-editable task ID, othducms are editable

+ explore() - method is invoked when treenode is the firsetempanded and has no
children yet. In our example we build new nodestésk children.

JavaGantt 2011.1 Manual

« moveODbject(), deleteObject() andcreateObject() - these methods are required to
implement by parent class (they are abstract). Hneynvoked when user executes
corresponding action. JavaGantt makes its workestdble nodes level, but a
programmer has to serve the domain objects leweih $hese methods we handle the
Task objects hierarchy. Note the undo / redo suppantstmuld use in these methods.

+ getLabel() - we use the LabelLayer layer later in our exanaplé it requires to

implement this method - here it returns a nametatk assignee

Here is the source:

public class Model extends GanttModel {

public Model () {
super ();
}

@Override
public Class getColumnClass (int column) {
switch (column) {

case 2:
case 3:
return Date.class;
default:
return super.getColumnClass (column);
}
}
@Override
public boolean isCellEditable (TreeTableNode node, int column) {
if (column ==0) {
return true;
}
return (column >= 2);
}
@Owverride

public void explore (GanttNode node) {
Task task = (Task) node.getUserObiject ();
for (Task t : task.getSubtask ()) {
GanttNode child = new GanttNode (this, t);
if (t.getSubtask ().isEmpty ()) {
child.setExplorable (false);

}
node.add (child);

@Owverride
public boolean moveObject (TimelineObject object,

Task task = (Task) object;

TimelineObject newContainer, int newlndex, UndoStep undo)

JavaGantt 2011.1 Manual

Task supertask = (Task) newContainer;
undo.registerObject (task);
undo.registerObject (supertask);
Task oldSupertask = task.getSupertask ();
if (supertask != oldSupertask) {
if (oldSupertask = null) {
undo.registerObject (oldSupertask);
oldSupertask.removeSubtask (task);

}

supertask.addSubtask (task);
}
supertask.shiftSubtask (task, newIndex);
return true;

@Owverride
public boolean deleteObject (TimelineObject what, UndoStep undo)

Task task = (Task) what;

Task parent = task.getSupertask ();
undo.registerObject (parent);
undo.registerObject (task);
parent.removeSubtask (task);
return true;

@Override
public TimelineObject createObject (TimelineObject parent, int
index,
UndoStep undo) {

undo.registerObject (parent);
Task parentTask = (Task) parent;
Task task = new Task ();
String id = Gantt.getNextTaskld ();
task.setTaskld (id);
task.setName ("Task " + id);
parentTask.addSubtask (task);
parentTask.shiftSubtask (task, index);
return task;

@Override
public String getLabel (TimelineObject object) {

if (object instanceof Task) {

Resource assignee = ((Task) object).getAssignee

0
if (assignee = null) {

return assignee.getName ();
}

return null;

}

Now we can create oldemoGantt class that subclasses JavaGantt. It is very siolpss, it
has only two methods to support mouse actions:

JavaGantt 2011.1 Manual

+ getPopupActions() - returns the list of actions to show in popup men

+ doubleClicked() - invokes dialog to edit task properties when ukrrble-clicked on
task node

public class DemoGantt extends JavaGantt {

private static Action createNodeAction;
private static Action editNodeAction;

private static Action deleteNodeAction;
private static Action indentNodeAction;
private static Action unindentNodeAction;
private static Action moveNodeUpAction;
private static Action moveNodeDownAction;
private static Action expandAlINodesAction;
private static Action collapseAllNodesAction;
private static Action zoomlInAction;

private static Action zoomOutAction;

private static Action todayAction;

private static Action undoAction;

private static Action redoAction;

private List popupActions;

public DemoGantt (GanttModel model) {
super (model);
}

@Override
protected List<Action> getPopupActions (List<Gantt Node>
selectedNodes) {
if (popupActions == null) {

popupActions = new ArrayList<Action> ();
popupActions.add (createNodeAction);
popupActions.add (editNodeAction);
popupActions.add (deleteNodeAction);
popupActions.add (null);
popupActions.add (indentNodeAction);
popupActions.add (unindentNodeAction);
popupActions.add (moveNodeUpAction);
popupActions.add (moveNodeDownAction);

}

return popupActions;
}
@Override

public void doubleClicked (GanttNode node) {
Task task = (Task) node.getUserObiject ();
TaskPropertiesAction.showTaskProperties (task, th is);

To keep the example here as simple as possiblgneed another auxiliary classes (as
actions, form to edit task properties or date m@iderer). All of them you can find in our
DEMO directory.

10

JavaGantt 2011.1 Manual

So what we need is put it all together. It is donBemoGantt.main() method:

/I create model
/I it extends GanttModel
GanttModel model = new Model ();

/I create domain objects

/I they should come from database

/I or server in real application
Resource worker_1 = new Resource ();
worker_1.setName ("Smith John");

Task task_1 1 = createTask ("Task 1.1", -20, +1, 92);
task_1_1.setAssignee (worker_1);

Task task_1 = createTask ("Task 1", 0, 0, 0);
task_1.addSubtask (task_1 1);

Project project = new Project ();
project.setName ("Project");
project.addResource (worker_1);
project.addSubtask (task_1);

/I set created project as gantt model root object
model.setRootObject (project);

/I create gantt component with "zebra" background

/I and vertical column-line-separators

JavaGantt gantt = new DemoGantt (model);

JTreeTable treeTable = gantt.getTreeTable ();

treeTable.setAlternateBackground (treeTable
.getDefaultAlternateBackground ());

treeTable.setShowVerticalLines (true);

/I create columns in gantt tree-table

/I this is the first column with task tree
GanttColumn column = new GanttColumn ();
column.setHeaderValue ("Task name");
column.setBinding ("name");
gantt.addColumn (column);

column = new GanttColumn ();
column.setHeaderValue ("Task ID");
column.setBinding ("taskld");
gantt.addColumn (column);

/l resize columns to appropriate width

11

JavaGantt 2011.1 Manual

gantt.getTreeTable ().pack ();

I create layers for gantt chart

/I order of layers is important for painting
gantt.addLayer (new BackgroundLayer ());
gantt.addLayer (new CalendarLayer ());
gantt.addLayer (new GridLayer ());
gantt.addLayer (new TodayLayer ());
gantt.addLayer (new GanttNodeLayer ());
gantt.addLayer (new LabelLayer ());
gantt.addLayer (new DependencyLayer ());

/I create gantt actions

createNodeAction = new CreateNodeAction (gantt);
editNodeAction = new TaskPropertiesAction (gantt) ;

build menu and toolbar, create a swing frame and show it

Note in this example:

you don't need to act with treenodes - we buildtask hierarchy and then we set the
top object project) as the root object to model

notesetBinding() method usage when we construct treetable colurbpghis method
you can tell to the treetable which property of ydamain object you want to display
in the column - there is no manual programmingaiadyet / set access

note also layers setting - you can see that thedbthe chart component is
conditional - it depends on the layers you useaiatpt. You can write your own
layers to give your application a specific look.

12

JavaGantt 2011.1 Manual

2 JavaGantt installation

Simply unzip downloaded file to appropriate diregt¢you must create such directory). You
will get this structure:

JAVAGANTT - this is the ro ot directory
license.txt - license agreem ent
release.txt - release notes
DEMO - source example S
DOC - documentation directory
javagantt_2011_1.pdf - JavaGantt manu al
API - Javadoc direct ory

LIB - jars directory
javagantt_2011_1.jar - component libr ary
gaia_2011_2.jar - BeeSoft genera | library
launcher.jar - library for la unch apps
abeona_2011 1.jar - license protec tor

You can copy JAR files to any appropriate placeyfmur development. It is not necessary to
keep them in the installation directory.

2.1 Packages
JavaGantt consists of these packages:
* eu.beesoft.gantt - contains main classes and interfaces (JavaGantt,
GanttModel, TimelineObject, Dependency)
* eu.beesoft.gantt.action - contains all implemented actions
* eu.beesoft.gantt.chart - contains chart related classes (ChartComponent,
Layer, TimeSpan, TimeUnit)
* eu.beesoft.gantt.treetable - contains treetable related classes (GanttTreeTabl
GanttColumn, GanttNode)
* eu.beesoft.gantt.undo - contains classes for undo / redo functione

(UndoStep, StateEditableObject)

JavaGantt strongly uses classes from d@saia library. This is our company general library
and is available for free. Current version of fibgary is included in your distribution, but
you can upgrade at any time. These packages®@amare used by JavaGantt:

* eu.beesoft.gaia.swing - contains Swing components and classes for S
support
* eu.beesoft.gaia. util - contains utility classt

13

JavaGantt 2011.1 Manual

2.2 Licenseinstallation

JavaGantt is component protected B&\beona protection system. You can freely download
this component and use it, but there is one fedtuilein: if JavaGantt is not licensed, it
stops to work 10 minutes after it was construc¥am must restart your application which
uses this component.

When you purchase a license for JavaGantt, yougetlla license file to your email. Copy
this file where you want to your classpath and tbemplete your application with a similar
code:

JavaGantt gantt = new JavaGantt ();
... init gantt component

InputStream is = SomeMyClass.class.getlnputS tream (
"path-to-license-file");
License license = gantt.setLicense (is);
if (license == null) {
throw new RuntimeException (
"Ooops, something goes wrong here...");

14

JavaGantt 2011.1 Manual

3 Modd for JavaGantt

The model for JavaGantt consists of:

+ theTimelineObject interface
+ the Dependency interface
+ theGanttModel class

That's all. Your domain objects must implementdhen interfaces. And your model must
subclass th&anttModel class to serve some methods.

3.1 Programming domain objects

Every application works with data objects. Thesgatis are important for the problem area
that an application solves and they are called dowolgiects. For application, which uses
gantt chart, are domain objectsks.

So the domain object class for our exampléask. What do you have to do to let it work
with JavaGantt?

JavaGantt does not prescribe what objects you anBut it requires to implement interface
eu.beesoft.gantt. TimelineObject. It is a simple interface with methods ligetSartDate(),
isMilestong(), and so on. You can implement them very easy.

It is a bit complicated, if you usesammary tasks. This is the task which has subtasks - it is
like container in the task hierarchy (non leaf fodéen you have to arrange synchronization
of date changes in subtasks and in summary task.

In our demo you can see this code for class Task:

public class Task extends AbstractBean implements T imelineObject {

private String taskld;
private String name;
private String description;
private Date startDate;
private Date endDate;
private long effort;

private boolean milestone;
private Task supertask;
private List<Task> subtask;
private List<Dependency> dependencies;
private Resource assignee;

15

JavaGantt 2011.1 Manual

public Task () {
/I empty
}

/** Standard getter for property 'name' */
public String getName () {

return name;
}

[** Standard setter for property 'name' */
public void setName (String name) {
String old = this.name;
this.name = name;
firePropertyChange ("name", old, name);

/**
* Getter for property 'startDate'. Implementa
* TimelineObject interface.
* If this task is summary, calculates start d
*/
public Date getStartDate () {
if ((startDate == null) && isSummary ()) {
updateStart ();
}

return startDate;

/**
* Setter for property 'startDate’.
* Implementation of TimelineObject interface.
* If this task has a supertask, notifies it a
* invokes method updateStart().
*/
public void setStartDate (Date start) {
if (Objects.equals (this.startDate, start)) {
return;
}

Date old = this.startDate;

this.startDate = start;

if (supertask != null) {
supertask.updateStart ();

}
firePropertyChange ("startDate", old, start);
}
/**
* For summary task calculates its start date
*/

private void updateStart () {
if (isSummary ()) {
Date thisStart = null;
List<Task> tasks = getSubtask ();

tion of

ate from subtasks.

bout the change —

from subtasks.

16

JavaGantt 2011.1 Manual

for (Task task : tasks) {
Date taskStart = task.getStartDate ();
if (taskStart !'= null) {
if ((thisStart == null) ||
thisStart.afte r (taskStart)) {
thisStart = taskStart;

}

}
if (thisStart != null) {

setStartDate (thisStart);
}

Remaining methods are implemented in the similar. @4 course, your implementation can
be quite differentTimelineObject interface prescribes some methods, not their body.

Maybe you want to know, what AbstractBean, which is used as parent class of dask. It
is class from ouGaia library (it is shipped with JavaGantt) and it ss\as support for
property change listeners and their notification.

3.2 Interface TimelineObject

TimelineObject is an interface that prescribes some methodsdor gomain objects. Each of
these methods concerns on getting / setting datadéogantt chart:

void addPropertyChangeL istener (PropertyChangel istener) - Adds instance of
java.beans.PropertyChangeListener to a listerter lis

Date getStartDate () - Returns the start date of this TimelineObject.

void setStartDate (Date) - Sets the new start date for this TimelineObject.
Date getEndDate () - Returns the end date of this TimelineObject.

void setEndDate (Date) - Sets the new end date for this TimelineObject.

boolean isSummary () - Returns true if this is a summary object (it tadms some
subtasks).

boolean isMilestone () - Returns true if this is a milestone object.
void setMilestone (boolean) - Sets the milestone property.

List<Dependency> getDependencies () - Returns a list of all dependencies between
this TimelineObject and other objects.

void setDependencies (List<Dependency>) - Sets a list of all dependencies between
this TimelineObject and other objects.

17

JavaGantt 2011.1 Manual

A typical application's domain object that hasnpliement this interface istask.

3.3 Interface Dependency

Dependency is an interface that describes dependency betWimeglineObjects. Here is the
list of methods you need to implement:

TimelineObject getSuccessor () - Returns a dependant object.

void setSuccessor (TimelineObject) - Sets a dependant object.

TimelineObject getPredecessor () - Returns an object which dependant depends on.
void setPredecessor (TimelineObject) - Sets object which dependant depends on.

int getType () - Returns the type of this Dependency (one ottrestants
FINISH_TO_START, FINISH_TO_FINISH, START_TO_START,
START_TO_FINISH).

void setType (int) - Sets the new type of this Dependency (one ottmstants
FINISH_TO_START, FINISH_TO_FINISH, START_TO_START,
START_TO_FINISH).

There are some constants defined inRiependency interface. They define the type of
dependency:

FINISH_TO_START - Constant for dependency type where dependanbtdegin
until the object it depends on is complete.

FINISH_TO_FINISH - Constant for dependency type where dependanbtde
completed until the object that it depends on impleted.

START_TO_START - Constant for dependency type where dependanbtdegin
until the object that it depends on begins.

START_TO_FINISH - Constant for dependency type where dependanbtde
completed until the object that it depends on begin

3.4 Class GanttM odd

GanttModel extends JTreeTable model(beesoft.gaia.swing.TreeTableModel) from Gaia
library. You have to implement these methods:

TimelineObject createObject (TimelineObject, int, UndoStep) - Creates a new
domain object and adds it as child to parent (yanitcheed to care about treetable
nodes). Register all modified objects to undo befory change.

18

JavaGantt 2011.1 Manual

+ boolean deleteObject (TimelineObject, UndoStep) - Removes given object from its
parent on domain objects level (you don't neechte ebout treetable nodes). Register
object, its parent and all modified objects to ubéfore any change.

» boolean moveObject (TimelineObject, TimelineObject, int, UndoStep) - Moves
given object on domain objects level (you don'tchi@ecare about treetable nodes).
Register all modified objects to undo before angnge.

The methods above are designed to manipulate Wjdtts on the domain objects level. You
don't need to work with treetable nodes.

Here is the implementation of some methods fromdeuno application:

@Owverride
public boolean moveObject (TimelineObject object,
TimelineObject newContainer, int newlndex, UndoStep undo)

Task task = (Task) object;
Task supertask = (Task) newContainer;
undo.registerObject (task);
undo.registerObject (supertask);
Task oldSupertask = task.getSupertask ();
if (supertask != oldSupertask) {
if (oldSupertask != null) {
undo.registerObject (oldSupertask);
oldSupertask.removeSubtask (task);
}
supertask.addSubtask (task);
}
supertask.shiftSubtask (task, newIndex);
return true;

@Owverride
public boolean deleteObject (TimelineObject what, UndoStep undo){
Task task = (Task) what;
Task parent = task.getSupertask ();
undo.registerObject (parent);
undo.registerObject (task);
parent.removeSubtask (task);
return true;

@Override
public TimelineObject createObject (TimelineObject parent,
int index, UndoStep undo) {

undo.registerObject (parent);
Task parentTask = (Task) parent;
Task task = new Task ();
String id = Gantt.getNextTaskld ();
task.setTaskld (id);
task.setName ("Task " + id);
parentTask.addSubtask (task);
parentTask.shiftSubtask (task, index);
return task;

19

JavaGantt 2011.1 Manual

Note, there is abindoStep object used as argument in these methods. It sigppado / redo
operations.

If you want to paint in the chart component ontilvee lines some texts (if you use
LabelLayer or TooltipLayer), you need override thesethods in GanttModel subclass:

« String getL abel (TimelineObject) - Returns label text for given object. This teses
LabelLayer to paint additional info to timeline ebj. Typically, for a task is name of
the assignee probably the best result.

« String getTooltipText (TimelineObject) - Returns tooltip text for given object.
GanttModel supportdazy loading for treetable data. The possibilities of

ExplorableTreeNode, which is an ancestor of Gardt\@as emplyed here. When node is
expanded and was not explored still, method ex(BarttNode) is invoked.

« void explore (GanttNode) - This method is called by GanttNode for data ingd

Override this method to loading children of youndon object. In the typical lazy-loading
implementation:
+ get a user object from giveinade
« load children of user object and build hierarchy
for each loaded child create instance of GanttNoaeset child as its user object

- add each created instance of GanttNode as a chilektgivemode

20

JavaGantt 2011.1 Manual

4 JavaGantt component

JavaGantt is the Swing component which interacts with Gamitlél. It covers these
components:
GanttTreeTable - displays treetable on the le# sidgantt chart
- ChartHeader - displays header (months, dateshéoright side of the gantt chart
- ChartComponent - displays gantt drawing area (imeebbjects and dependencies)

These components are constructed in the initiatizgihase and developer has no impact to
it. You can change their properties only.

4.1 Getting standard sub-components

The standard JavaGantt subcomponents are accdsgithlese methods:

« GanttTreeTablegetTreeTable () - Returns the tree table object of this JavaGantt.

ChartComponent getChartComponent () - Returns the instance of
ChartComponent.

« ChartHeader getChartHeader () - Returns the instance of ChartHeader.

UndoM anager getUndoM anager () - Returns the undo manager for JavaGantt
operations.

- getDividerLocation () - Returns divider location of the split pane (betw treetable
and chart component).

setDivider Location (int) - Sets the divider location of the split pane \ilzstn
treetable and chart component).

4.2 Building a treetable

Here are JavaGantt methods you can use to buhdr: c

« GanttModel getModel () - Returns GanttModel instance for this JavaGadbjtai.
void setM odel (GanttM odel) - Sets the new model for JavaGantt object.
+ void addColumn (GanttColumn) - Appends a column to the end of table columns.

21

JavaGantt 2011.1 Manual

GanttColumn addColumn (String, String) - Appends a column to the end of table
columns.

« void removeColumn (GanttColumn) - Removes the column from the treetable.
+ void removeColumn (String) - Removes a column with given key from the treletab

The methods working with columns are implemente@amttTreeTable and methods in
JavaGantt simply redirect to them.

4.3 Building achart

Here are JavaGantt methods you can use to buldr: c

- void addL ayer (Layer) - Adds given layer to the list of chart componkayers.
void addL ayer (Layer, int) - Adds given layer to the list of chart componlayers.

- void removel ayer (Layer) - Removes given layer from the list of chart comgrat
layers.

List<Layer> getLayers() - Returns the list of chart component layers.

All of these methods are implemented in ChartCormepband methods in JavaGantt simply
redirect to them.

4.4 Mouse support

JavaGantt has built-in mouse support, so you deed to work with mouse listeners. Use
these methods instead:

+ void doubleClicked (GanttNode) - Invoked when user double clicked on the node. In
this implementation does nothing. Typically, yowshkl display properties dialog for
node's user object. In our demo application we ttoasand display task properties
form in this method.

List<Action> getPopupActions (List<GanttNode>) - Returns a list of actions for
selected nodes. Invoked when user right clickshembde(s) in treetable. In this
implementation does nothing and returns null. I yall override it and return a list
of actions, JavaGantt constructs popup menu apdbgs it.

MethoddoubleClicked() is invoked from treetable and also from gantt thamponent. The

getPopupActions() is treetable method only. If you return a non-tist] the popup menu is
displayed.

22

JavaGantt 2011.1 Manual

4.5 ocalization

The JavaGantt components (treetable columns amharintense use resource bundle
technique. These methods of JavaGantt are abautreesbundles:

« String getResour ceBundleName () - Returns the name of the resource bundle.

+ void setResourceBundleName (String) - Sets the name of resource bundle. This
name must according to java.util.ResourceBundleiipation. Resource bundle is
then used to construct treetable columns and gantns.

But resource bundle may be accessed also if yot skirnits name explicitly. So how does it
work?

The main class for these purposesudeesoft.gaia.util.Language. In the Swing environment
is a singleton (but it has a public constructoryso can create as many instances as you need
in server environment). The singleton is accessilslanethod

Language.getinstance ();

which returns last created instancd.ahguage. UsingLanguage has big advantage when
you change application's Locale. Setting this lranguage provides for all
LanguageListeners notification to easy reloading texts from reseusandles.

When you take a look at Language API documentation,can see methagtText() with
first argument either a resource bundle name oesalject. These methods are used from
JavaGantt and its subcomponents.

1. if resource bundle name is set (by metaehGantt.setResour ceBundleName()), this
resource bundle is constructed and used. Notergbatirce bundle name must have a
form of class name.

2. if noresource bundle name is set, then the name @drturavaGantt class (its
subclass) is taken and used to find resourcestfuree is not found, or key with given
name is not found,anguage class takes a superclass name and repeats sgarchin

So if you don't use methaliwvaGantt.setResourceBundleName(), youmust create a
properties filein the same package where your JavaGantt subclass is storedvétiuthe
same name as thas subclass has. In that case it will wothaut explicitly setting the
resource bundle name and you can use the advargbigperitance.

23

JavaGantt 2011.1 Manual

4.6 License protection

JavaGantt is protected by tAbeona protection system.

It works without any license, but 10 minutes aftavaGantt was created it displays a warning
message and stops to paint itself. So if you wadetelop an application, which will work
more than 10 minutes, you need purchase the lidemseBeeSoft. License is plain

properties file protected by digital signature dede are methods to tell JavaGantt about
license:

+ LicensesetLicense (InputStream) - Loads license from given licenseStream. This is
a key method of library protection system.

« LicensegetLicense () - Returns instance of valid License or null.
The first method has an input stream from liceflseas argument, and returns newly created

License instance. You don't need to work with this obj@aest check for non-null return value.
If it is null, you have some problem with that file

24

JavaGantt 2011.1 Manual

5 Gantt Tree Table

GanttTreeTable is the tree table for gantt chart. It is the leftated component of the
JavaGantt.

GanttTreeTable is the descendant ofeindeesoft.gaia.swing.JTreeTable (you can read
about it in the next chapter, and the next inforomest are accessible in API documentation).

5.1JTreeTable description

The eu.beesoft.gaia.swing.JTreeTable class is a combination of a JTree and a JTable - a
component capable of both expanding and contractwg, as well as showing multiple
columns of data.

This component always displays a tree in the éestmn and the additional data in the next
columns. You can see its usage in a very simplenpiaof the directory tree.

1_1 Directories Tree N = inlﬂ
File | Size | Modified
E+J ___g PDFCreator wed Feb 17 08136130 C._A_!
-] Pidgin Tue Mar 02 05:25:30 CE
=) PIXELA Mo Aug 21 15:46:48 C.
¥l | QIP Infium Tue Mar 02 08:18:29 CE

YWed Mar 26 2000236 .
Fri Jun 27 18:39:20 CES.
Fri Jum 27 18:39:19 CES,
Fti May 30 15:54:14 CES

bl O O O O O O

i Lo-d Skype.ewe 21715312 Fri May 20 15:54:14 CES
© [Plugin Manager i Fri Jun 27 18:39:20 CES,
. @) Toohars i Fri Jun 27 18:39:20 CES,
-] Sparx Systems o YWed Apr 23 19:40:22 C,
C _._i Spyware Terminaktor 1] Sun Feb 28 12:09:35 CE
-1] Symantec 0 wed Apr 15 19:40:02 C.
E ___3 Symantec Ankivirus i] Thu Mar 04 07:33:23 CE
| SystemRequirementsLab 0 Sur Dec 16 19:29:28 CE
M- T¥ 300 Media Player o Tue Jan 01 23:21:34 CE,
- U o Thu Jun 16 20:35:51 CE.
@ Uninstall InFarmation i Fri dpr 29 13:34:46 CES,
m S Mivkaml- M Toam Toam 200 4000 CE e
o el

This component has the next features:

it inherits from its parent class ability to hidehow columns

« right click on the table header shows popup merih ligt of all columns - this is the
user way to show / hide columns

« also inherits possiblezgora’ look (even rows can have an alternate backgraotat)
- the tree is always painted in the first columnhaf treetable

25

JavaGantt 2011.1 Manual

+ as its model you must usa.beesoft.gaia.swing. TreeTableModel or subclasse it (that's
what GanttModel does)

- descendants of thepi.beesoft.gaia.swing. TreeTableNode are only nodes acceptable in
the JTreeTable (and GanttNode is the descenddntefl ableNode)

5.2 GanttNode

GanttNode is the onlyjavax.swing.tree. TreeNode acceptable by a gantt tree data structure. It
is a final class, so there is no way to custontize i

Here are the key features of the GanttNode:

« a TimelineObject is used as an user object innioeke. Each user object must
implement this interface.

+ itinherits ability of the data lazy-loading

- although GanttNode is a part of the treetableglid$ some informations for chart
component (the bounds of timeline, for example)

5.3 Gantt column and data binding

GanttColumn represents a column in the GanttTreeTable. Itdestendant of
javax.swing.table. TableColumn . It supports:

« resource bundle usage for column label
- data binding for getting / setting values from Gisotle's user object

Data binding is implemented ley.beesoft.gaia.util.Miner class. It gets values from any
object and sets them in. In the first step via propaccessors (getter / setter) and if
appropriate accessor is not found, on the fiel@éssdtevel. More informations abddiner
class you can find in APl documentation.

GanttM odel has implemented these methods related to datanlgind

+ Miner getMiner () - Returns the current instance of the Miner usethis
GanttModel.

« void setMiner (Miner) - Sets a new instance of the Miner for use by@asttModel.
The Miner class is designated to obtain propertyezan method or field level from
any object. You can subclass Miner class to reacin sequirements.

« Object getValueAt (TreeTableNode, int) - Returns value from given node and for
given column.

« void setValueAt (TreeTableNode, int, Object) - Sets given value to the user object
in the node and column.

26

JavaGantt 2011.1 Manual

All you need to do for automated data binding isébproperty name to gantt column. Then
methodgyetValueAt() andsetValueAt() in GanttModel can work fully automatically. If you
domain objects are not suitable for data bindimgroade methodgetValueAt() and
setValueAt(). You can also subclass Miner class and set itoti®lodel by method
setMiner(Miner).

These methods support data bindingenttColumn:

String getBinding () - Returns binding for this column. Binding is aperty name
(or dot-separated chain of property names). A vedughis column is mined from this

property.

+ void setBinding (String) - Sets binding for this column. Binding is a pragenxame
(or dot-separated chain of property names). A viduéhis column is mined from this
property.

Data binding works very simply (from the programmgoint of view). It uses class
eu.beesoft.gaia.util.Miner to get (and also set) the value from (to) obj¢ealue is defined by
the property or field naméJiner tries to find getter for property, and if this wast
successful, it uses field access.

So all you need to do is to tell the column abauopprty (field) to display:

column.setBinding ("startDate");

You can use dot-convention for property name, ifryaroperty is not in given object, but in
referenced object. In our demo application hassdlask the fieldassignee. So if you want to
display a task assignee's name in column, you eairsding this way:

column.setBinding ("assignee.name");

5.4 L ocalization

A GanttColumn has built-in support for resource bundle usages&methods are
implemented:

- String getResourceBundleK ey () - Returns key used for resource bundle.

void setResourceBundleK ey (String) - Sets resource bundle key. This key is used
when accessing resource bundle to get (localizeldyan label.

27

JavaGantt 2011.1 Manual

« void languageChanged (L anguage) - Implements LanguageListener. Invoked when
environment changes. Reinitializes column headsn fresource bundle.

First two methods operates with resource bundle lkey a key under which is stored
localized text in resource bundle. The third metisoa listener method and is invoked, when
you change language settings in application.ittiveked fromeu.beesoft.gaia.util.Language.

So you don't need to invoke methamumn.setHeaderValue (). This is the usual way, known
from JTable and its components. You can set a&egdlumn name in resource bundle
instead:

column.setResourceBundleKey ("columnStartDate");

and in your JavaGantt resource bundle to defineetiuing like:

columnStartDate=Start date

When you or user changes the application languageomment, you have to take a care only
of localized resource bundle.

28

JavaGantt 2011.1 Manual

6 Gantt Chart

Gantt chart is located on the right side of thea@antt component. It consists of:

« chart header

+ chart component
All classes of the gantt chart are in the pacleageeesoft.gantt.chart.
There are two important classes for whole package:

« TimeUnit
« TimeSpan

TimeUnit is an enumeration for time unit granularity. In&ns constants from seconds to
year and some useful methods.

TimeSpan envelopes date range (start time - end time)aht&s oflimeSpan are created by
ChartComponent in its updateChart() method. They contains information about:

- start date of time span

« end date of time span

- whether it is a holiday or weekend

+ X-position of this time span in chart componentrdotates
+ width of this time span in pixels

All of these informations are used by chart compone prepare painting.

The painting in gantt chart is implemented throtighlayers. ALayer is an abstract class that
provides functionality to paint chart and interadth a user.

When you construct a gantt, you set to the Charyi@omant several layers. Chart component,
when painting, iterates through them and invokeg#mnt(Graphics) method on each of
them. The order you add layers to ChartCompondantpsrtant. Each layer paints just the
things it is programmed for. You can assemble ttegtdrom the layers as you need. So the
chart preparation can look like this:

JavaGantt gantt = ...

gantt.addLayer (new BackgroundLayer ());
gantt.addLayer (new CalendarLayer ());
gantt.addLayer (new GridLayer ());
gantt.addLayer (new TodayLayer ());
gantt.addLayer (new GanttNodelLayer ());
gantt.addLayer (new LabelLayer ());
gantt.addLayer (new DependencyLayer ());

29

JavaGantt 2011.1 Manual

All these layers are available in the JavaGanttidigion.

But you are not limited to use just these layersu ¥an write your own, or modify existing,
or to omit some of them, to get the original look your application.

6.1 Chart header

ChartHeader paints headers above the ChartComponent instdhtecomponent contains
two headers - major and minor - and their models.

HeaderMode is used to paint major or minor header for Cham@onent. It contains data for
header columns.

Header Column is a subclass gavax.swing.table. TableColumn to hold list of TimeSpan
instances. These instances are used to calcutate afi the column.

There is very low probability you need to custontizese classes. They are created by
JavaGantt in initialization phase. All you needltois to use them.

6.2 Working with thetime scale

The Gantt chart time scale is significant for gahikirt span, for the chart header content and
also for chart clarity and readability.

All classes of the gantt chart header and the sicade are in the package
eu.beesoft.gantt.chart:

« TimeUnit is an enumeration for time unit granularity. Intans constants from
seconds to year and some useful methods.

- TimeSpan envelopes date range (start time - end time)ahtgts oflimeSpan are
created byChartComponent in its updateChart() method. They contain information
about start and end date of time span, whetheraitioliday or weekend, x-position of
this time span in chart component coordinates adthvef this time span in pixels.

« ChartHeader paints headers above the ChartComponent inst@hisscomponent
contains two headers - major and minor - and theidels.

+ HeaderModel is used to paint major or minor header for Cham@onent. It contains
data for header columns.

« Header Column is a subclass g&vax.swing.table. TableColumn to hold list of
TimeSpan instances. These instances are used to calcidateds the column.

There is very low probability you need to custontizese classes. They are created by
JavaGantt in initialization phase. All you needltois to use them.

30

JavaGantt 2011.1 Manual

Zoom policy

The zoom policy defines the way the chart is zoomédut. There is defined an interface
ZoomPolicy and also its default implementation built in CRamnponent. But maybe you
will need create your own.

The ZoomPolicy requires to implement 4 methods:

« public int getStepCount () - returns the step cdanthis policy

« public TimeUnit getMajorStep (int index) - returiime granularity for major header

« public TimeUnit getMinorStep (int index) - returtisie granularity for minor header

+ public int getTimeSpanWidth (int index) - returnglith (in pixels) of TimeSpan
instances for given step.

They could be implemented in this manner, for exdamp

public class MyZoom implements ZoomPolicy {

private TimeUnit[] majorStep;
private TimeUnit[] minorStep;
private int[] widthStep;

public Zoom () {
majorStep = new TimeUnit[5];
minorStep = new TimeUnit[5];
widthStep = new int[5];

majorStep[0] = TimeUnit. WEEK;
minorStep[0] = TimeUnit.DAY;
widthStep[0] = 80;

majorStep[1] = TimeUnit. MONTH,;
minorStep[1] = TimeUnit.DAY;
widthStep[1] = 40;

majorStep[2] = TimeUnit. MONTH,;
minorStep[2] = TimeUnit. WEEK;
widthStep[2] = 20;

majorStep[3] = TimeUnit.YEAR;
minorStep[3] = TimeUnit. WEEK;
widthStep[3] = 10;

majorStep[4] = TimeUnit.YEAR;
minorStep[4] = TimeUnit. MONTH,;
widthStep[4] = 5;

public int getStepCount () {
return majorStep.length;
}

31

JavaGantt 2011.1 Manual

public TimeUnit getMajorStep (int index) {
return majorStep[index];
}

public TimeUnit getMinorStep (int index) {
return minorStep[index];
}

public int getTimeSpanWidth (int index) {
return widthStep[index];
}

How to customize text for chart header

WhenHeaderModel (re)constructs itself, it calls meth@hnttModel .getChartHeader Text
(Date, TimeUnit, boolean) for each relevant date. So this methoGanttModel is the place
to customize chart header texts.

What you have to do is to return text for givenéand time granularity (TimeUnit). For
example, if TimeUnit is YEAR, you will return "201¢f date is of that year. The third

(boolean) argument distinguishes between requeshdor and minor header, because you
may want to display the same value differentlyacleother header.

6.3 Chart component

A ChartComponent is one of the most meaningful sub-componentswdGantt. It is painted
on the right side of JavaGantt (there is an ingaric TreeTable on the left).

It co-ordinates painting with registered instanockethe Layer class and dispatches events to
them.

The ChartComponent is created by JavaGantt iralizigition phase and there is no way to
customize it.

6.4 L ayer

A layer is an object having a graphical represérahat can be displayed in the gantt chart
and that can interact with the user.

TheLayer class is the abstract superclass of the each ¢fzantt layer.

32

JavaGantt 2011.1 Manual

The gantiChartComponent holds a stack of user-defined layers. When thdatet
paint(Graphics) on ChartComponent is invoked, it walks througls stack (in order the
layers were added) and if the layer is visible frodisVisible() returns true) calls method
paint(Graphics) on it.

Here are the methods theat beesoft.gantt.chart.Layer class provides:

« JavaGantt getGantt () - Returns instance of JavaGantt to which this Légbongs.
+ boolean isVisible () - Returns value of property 'visible'.

« void setVisible (boolean) - Sets a new value for property 'visible'. Laysepainted
only if visible = true.

« List<GanttNode> getPaintedNodes () - Returns list of currently on-screen visible
and painted gantt nodes.

« int getPosition (Date) - Returns x-coordinate for given date.

+ void mouseClicked (MouseEvent) - Invoked when the mouse has been clicked on a

component. In this implementation does nothing.

« void mouseEntered (MouseEvent) - Invoked when the mouse enters a component. In

this implementation does nothing.

« void mouseExited (MouseEvent) - Invoked when the mouse exits a component. In

this implementation does nothing.

« void mousePressed (M ouseEvent) - Invoked when a mouse button has been pressed

on a component. In this implementation does nothing

« void mouseReleased (MouseEvent) - Invoked when a mouse button has been
released on a component. In this implementatios do¢hing.

+ void mouseM oved (MouseEvent) - Invoked when the mouse button has been moved

on a component (with no buttons no down). In tmplementation does nothing.

« void mouseDragged (M ouseEvent) - Invoked when a mouse button is pressed on a

component and then dragged. In this implementataas nothing.

There is a set of implemented layers you can ueo@se, you can write your own -
subclas®u.beesoft.gantt.chart.Layer and implement methagghint(Graphics).

You can also modify an existing layer - subclassd override method you need.

The good news is that you don't need to take aafaadding objects to layers and their

synchronization with JavaGantt model. Layers workdly with JavaGantt model nodes. A

GanttTreeNode holds itsbounds - it is a rectangle where this node is paintedavaGantt
ChartComponent (Layer) coordinates. This can yoankwgreatly facilitate.

Now we can see how to customize some layer. We thev@anttNodeLayer which paints
timeline objects (tasks, summaries and milestoes).now we want to paint the tasks
differently. We want to paint task's time line witblorized information about task
completion.

33

JavaGantt 2011.1 Manual

The easiest way to implement this is to subdzea®tNodeLayer and override method

paintTask():

public class MyLayer extends GanttNodeLayer {

@Override
protected void paintTask (GanttNode node, Graphics
Rectangle bounds = node.getBounds ();
int X = bounds.x;
int y = bounds.y;
int width = bounds.width;
int height = bounds.height;

/[don't fill whole space for node, it looks ugli
if (width > 6) {

X +=2;

width -= 5;

}
y =y +height/ 4 - 1;
height = height / 2 - 1;

/I paint border around task time line
g.setColor (getTaskBorderColor ());
g.drawRect (X, y, width, height);

/I edit coordinates
++X;

++y;

--width;

--height;

/I get the task completion and compute threshold
Task task = (Task) node.getUserObiject ();
double completion = task.getCompletion();

/I value between 0.0 and 100.0
int threshold = (int) (width * completion) / 100;

/I paint completed part of task with darker color

if (threshold > 0) {
g.setColor (getTaskInteriorColor ().darker());
g.fillRect (x, y, threshold, height);

}

/I paint incomplete part of task with brighter co
if (threshold < 100) {
g.setColor (getTaskInteriorColor ().brighter());
g.fillRect (x + threshold, y, width - threshold,
height);

9){

lor

34

JavaGantt 2011.1 Manual

6.5 Implemented layers

Here is the list of the implemented layers you gse:

BackgroundL ayer - Paints colored background for gantt chart.
CalendarLayer - Paints background for weekend days.
DependencyL ayer - Paints dependencies between gantt nodes.

GanttNodelL ayer - Paints gantt nodes as time-line objects on dwrponent and
processes moving and dragging of nodes by mouse.

GridLayer - Paints grid (horizontal and vertical lines) engt chart component.
LabelLayer - Paints text label beside node.

TodayL ayer - Paints strong vertical line on chart componémjieen date (usually
today).

35

JavaGantt 2011.1 Manual

7 Gantt actions

As a standard Swing component, JavaGantt is céedirbly actions.

7.1 AbstractGanttAction

AbstractGanttAction is a base class for gantt component actions.nivisiecessary to
subclass this class, you can use any action. BsirattGanttAction offers these features:

- ability to return JavaGantt instance
+ built-in resource bundle and language support
+ undo / redo support
AbstractGanttAction processeactionPerformed (ActionEvent) method to offer undo / redo

support. It invokesxecuteAction (ActionEvent, UndoStep) method, which is an abstract
method, and if it returns true, registers all clemfyjom UndoStep in UndoManager.

7.2 Localization

AbstractGanttAction gets its properties from resource bundle. All@acproperties (currently:
text, icon and tooltip) must be described in resednundle. This process is automated, so you
must observed some rules:

« each property name must be prefixed by fully qiedior simple action class name
- property name for action text (label)text

- property name for action iconiigon - it is path to icon image on classpath

« property name for action tooltip texttisoltip

For example, if your action classnydomain.mypackage.MyAction, then in the resource
bundle should be:

mydomain.mypackage.MyAction.text=Text for action

mydomain.mypackage.MyAction.icon=mydomain/mypackage /Mylcon.gif
mydomain.mypackage.MyAction.tooltip=This is a toolt ip for my action
or shorter:

36

JavaGantt 2011.1 Manual

MyAction.text=Text for action
MyAction.icon=mydomain/mypackage/Mylcon.qgif
MyAction.tooltip=This is a tooltip for my action

7.3 Undo/ Redo

JavaGantt uses Swinmdo package functionality to provide support for umddb
operations.

There are two classesen.beesoft.gantt.undo package for that purpose:

« UndoStep
- StateEditableObject

SateEditableObject implementgavax.swing.undo.SateEditable interface. Its constructor
takes one object, and StateEditableObject carohject introspect and to remember changed
properties.

UndoStep is the descendant fdvax.swing.undo.CompoundEdit class. It serves as a container
of all operations for one undo / redo step. It iffisvo methods:

« void register Object (Object) - Registers object to store / restore its stéigiven
object does not implement interface javax.swingau8thteEditable, the object is
covered by StateEditableObject to make it eligiblyundo / redo operations. Then is
object registered and its pre-state is obtained.

« void end () - Gets the post-edit state of the required objactsends the edit.
If you want to process undo / redo, you have to:

1. create an instandgndoStep

2. call registerObject(Object) for each object that can be changed in executiéohac
before any change occurs

3. callend() after action finished
4. obtain from JavaGantt instance an UndoManager
5. on UndoManager instance invoiddEdit (UndoStep) method
AbstractGanttAction supports all of these steps except step 2. So yahahave to do, if your

action is deriver fromf\bstractGanttAction, is to callregister Object(Object) for each object
that can be changed in meth®@cuteAction (ActionEvent, UndoSep) only.

37

JavaGantt 2011.1 Manual

7.4 1mplemented actions

Here is the list of the implemented actions you eset

CollapseAllNodesAction - This action collapses all nodes in the JavaGQGesetable.

CreateNodeAction - This action ask&anttModel.createObject(TimelineObject, int,
UndoStep) to create new domain object and then creates a3swtNode} and
includes it in hierarchy.

DeleteNodeAction - Action asksGanttModel .del eteObject(TimelineObject,
UndoStep) to delete domain object and if it is successtinoves the node from tree
hierarchy.

ExpandAlINodesAction - This action expands all nodes in the JavaGeggtdble.

IndentNodeAction - This action ask&anttModel.moveObject(TimelineObject,
TimelineObject, int, UndoStep) to move a domain object into domain hierarchy and
then moves also corresponding GanttNode.

MoveNodeDownAction - This action ask&anttModel.moveObject(TimelineObject,
TimelineObject, int, UndoSep) to move a domain object into domain hierarchy and
then moves also corresponding GanttNode.

MoveNodeUpAction - This action ask&anttModel.moveObject(TimelineObject,
TimelineObject, int, UndoSep) to move a domain object into domain hierarchy and
then moves also corresponding GanttNode.

RedoAction - This action ask3avaGantt.getUndoManager () to redo next operation.

TodayAction - This action scrolls the date/time columns in@martComponent} so
the column with today date is visible. You cana®f date for this action asday
date.

UndoAction - This action ask3avaGantt.getUndoManager() to undo last operation.

UnindentNodeAction - This action ask&anttModel.moveObject(TimelineObject,
TimelineObject, int, UndoSep) to move a domain object into domain hierarchy and
then moves also corresponding GanttNode.

ZoomlnAction - This action zooms in the content of ChartCompbne
ZoomOutAction - This action zooms out the content of ChartConepbn

38

JavaGantt 2011.1 Manual

8 Shipping to customer

When you will deploy your application based on JagaGantt at your customer (or you will
ship it), your product must contain libraries fronr JavaGantib directory:

+ javagantt 2011 1jar
+ gaia 2011 2jar
+ abeona 2011 1jar
Also must include the product license stored ira@&antt root directory:
+ licensetxt

This text file must be accessible and readabldbéyser of your product.

Your distribution also must include the licensetpation file you obtain when you purchase
JavaGantt.

+ javagantt.license
You should store this file to your classpath (entp some of your JAR files).

No other files are required.

39

